Home Life Sciences Transcytosis of payloads that are non-covalently complexed to bispecific antibodies across the hCMEC/D3 blood-brain barrier model
Article
Licensed
Unlicensed Requires Authentication

Transcytosis of payloads that are non-covalently complexed to bispecific antibodies across the hCMEC/D3 blood-brain barrier model

  • Daniela Schmid , Annette Buntz , Thi Ngoc Hanh Phan , Klaus Mayer , Eike Hoffmann , Irmgard Thorey , Jens Niewöhner , Katrin Vasters , Ranjan Sircar , Olaf Mundigl , Roland E. Kontermann and Ulrich Brinkmann EMAIL logo
Published/Copyright: February 20, 2018

Abstract

A transcellular shuttle system was generated for the delivery of non-covalently linked payloads across blood-brain barrier (BBB) endothelial cells. Transcytosis-enabling shuttles are composed of bispecific antibodies (bsAbs) that simultaneously bind transferrin receptor (TfR) and haptens such as digoxigenin or biocytinamide. Haptenylated payloads are attached to these vehicles via non-covalent hapten-antibody complexation. This enables targeting to and internalization into human BBB-derived microvascular endothelial hCMEC/D3 cells. In contrast to other shuttles, this system does not require special affinities or formats of their TfR-binding moieties for transcytosis and subsequent release. Non-covalent payload complexation to bsAb is flexible and robust, works for a multitude of payloads and enables separation of payloads from shuttles during transcytosis. Released payloads can enter the brain without connected bsAb entities, minimizing potential interference with distribution or functionality. Intracellular separation of shuttle and payload and recycling to cell surfaces may also enable recharging of the cell-bound BBB shuttle with payload for subsequent (merry-go-round) transport cycles.

Acknowledgements

We thank Heike Seul and Martina Wagner for excellent support and contributions. D.S. and A.B. are supported by the Roche Postdoc Fund (RPF)/Targeted Therapies.

  1. Conflict of interest statement: The authors are employees of Roche Pharma Research and Early Development. Roche is interested in targeted therapies.

References

Banks, W.A. (2016). From blood-brain barrier to blood-brain interface: new opportunities for CNS drug delivery. Nat. Rev. Drug Discov. 15, 275–292.10.1038/nrd.2015.21Search in Google Scholar PubMed

Bera, T.K., Onda, M., Brinkmann, U., and Pastan, I. (1998). A bivalent disulfide-stabilized Fv with improved antigen binding to erbB2. J. Mol. Biol. 281, 475–483.10.1006/jmbi.1998.1948Search in Google Scholar PubMed

Brinkmann, U. and Kontermann, R.E. (2017). The making of bispecific antibodies. MAbs 9, 182–212.10.1080/19420862.2016.1268307Search in Google Scholar PubMed PubMed Central

Brinkmann, U., Reiter, Y., Jung, S.H., Lee, B., and Pastan, I. (1993). A recombinant immunotoxin containing a disulfide-stabilized Fv fragment. Proc. Natl. Acad. Sci. USA 90, 7538–7542.10.1073/pnas.90.16.7538Search in Google Scholar PubMed PubMed Central

Dengl, S., Hoffmann, E., Grote, M., Wagner, C., Mundigl, O., Georges, G., Thorey, I., Stubenrauch, K.G., Bujotzek, A., Josel, H.P., et al. (2015). Hapten-directed spontaneous disulfide shuffling: a universal technology for site-directed covalent coupling of payloads to antibodies. FASEB J. 29, 1763–1779.10.1096/fj.14-263665Search in Google Scholar PubMed PubMed Central

Dengl, S., Sustmann, C., and Brinkmann, U. (2016). Engineered hapten-binding antibody derivatives for modulation of pharmacokinetic properties of small molecules and targeted payload delivery. Immunol. Rev. 270, 165–177.10.1111/imr.12386Search in Google Scholar PubMed PubMed Central

Evers, M.M., Toonen, L.J., and van Roon-Mom, W.M. (2015). Antisense oligonucleotides in therapy for neurodegenerative disorders. Adv. Drug Deliv. Rev. 87, 90–103.10.1016/j.addr.2015.03.008Search in Google Scholar PubMed

Friden, P.M., Olson, T.S., Obar, R., Walus, L.R., and Putney, S.D. (1996). Characterization, receptor mapping and blood-brain barrier transcytosis of antibodies to the human transferrin receptor. J. Pharmacol. Exp. Ther. 278, 1491–1498.10.1016/S0022-3565(25)20804-7Search in Google Scholar

Grote, M., Haas, A.K., Klein, C., Schaefer, W., and Brinkmann, U. (2012). Bispecific antibody derivatives based on full-length IgG formats. Methods Mol. Biol. 901, 247–263.10.1007/978-1-61779-931-0_16Search in Google Scholar PubMed

Hoffmann, E., Konkar, A., Dziadek, S., Josel, H.P., Conde-Knape, K., Kropp, H., Kling, L., Stubenrauch, K., Thorey, I., Dengl, S., et al. (2013). PK modulation of haptenylated peptides via non-covalent antibody complexation. J. Contr. Release 171, 48–56.10.1016/j.jconrel.2013.06.021Search in Google Scholar PubMed

Kontermann, R.E. and Brinkmann, U. (2015). Bispecific antibodies. Drug Discov. Today 20, 838–847.10.1016/j.drudis.2015.02.008Search in Google Scholar PubMed

Metz, S., Haas, A.K., Daub, K., Croasdale, R., Stracke, J., Lau, W., Georges, G., Josel, H.P., Dziadek, S., Hopfner, K.P., et al. (2011). Bispecific digoxigenin-binding antibodies for targeted payload delivery. Proc. Natl. Acad. Sci. USA 108, 8194–8199.10.1073/pnas.1018565108Search in Google Scholar PubMed PubMed Central

Niewoehner, J., Bohrmann, B., Collin, L., Urich, E., Sade, H., Maier, P., Rueger, P., Stracke, J.O., Lau, W., Tissot, A.C., et al. (2014). Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron 81, 49–60.10.1016/j.neuron.2013.10.061Search in Google Scholar PubMed

Pardridge, W.M. (2017). Delivery of biologics across the blood-brain barrier with molecular trojan horse technology. BioDrugs 31, 503–519.10.1007/s40259-017-0248-zSearch in Google Scholar PubMed

Pardridge, W.M. and Boado, R.J. (2012). Reengineering biopharmaceuticals for targeted delivery across the blood-brain barrier. Methods Enzymol. 503, 269–292.10.1016/B978-0-12-396962-0.00011-2Search in Google Scholar PubMed

Reiter, Y., Brinkmann, U., Kreitman, R.J., Jung, S.H., Lee, B., and Pastan, I. (1994). Stabilization of the Fv fragments in recombinant immunotoxins by disulfide bonds engineered into conserved framework regions. Biochemistry 33, 5451–5459.10.1021/bi00184a014Search in Google Scholar PubMed

Reiter, Y., Brinkmann, U., Jung, S.H., Pastan, I., and Lee, B. (1995). Disulfide stabilization of antibody Fv: computer predictions and experimental evaluation. Protein Eng. 8, 1323–1331.10.1093/protein/8.12.1323Search in Google Scholar PubMed

Sade, H., Baumgartner, C., Hugenmatter, A., Moessner, E., Freskgard, P.O., and Niewoehner, J. (2014). A human blood-brain barrier transcytosis assay reveals antibody transcytosis influenced by pH-dependent receptor binding. PLoS One 9, e96340.10.1371/journal.pone.0096340Search in Google Scholar PubMed PubMed Central

Schneider, B., Grote, M., John, M., Haas, A., Bramlage, B., Ickenstein, L.M., Jahn-Hofmann, K., Bauss, F., Cheng, W., Croasdale, R., et al. (2012). Targeted siRNA delivery and mRNA knockdown mediated by bispecific digoxigenin-binding antibodies. Mol. Ther. Nucl. Acids 1, e46.10.1038/mtna.2012.39Search in Google Scholar PubMed PubMed Central

Thorey, I.S., Grote, M., Mayer, K., and Brinkmann, U. (2016). Hapten-binding bispecific antibodies for the targeted delivery of siRNA and siRNA-containing nanoparticles. Methods Mol. Biol. 1364, 219–234.10.1007/978-1-4939-3112-5_18Search in Google Scholar PubMed

Weksler, B.B., Subileau, E.A., Perriere, N., Charneau, P., Holloway, K., Leveque, M., Tricoire-Leignel, H., Nicotra, A., Bourdoulous, S., Turowski, P., et al. (2005). Blood-brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J. 19, 1872–1874.10.1096/fj.04-3458fjeSearch in Google Scholar PubMed

Weksler, B., Romero, I.A., and Couraud, P.O. (2013). The hCMEC/D3 cell line as a model of the human blood brain barrier. Fluids Barriers CNS 10, 16.10.1186/2045-8118-10-16Search in Google Scholar PubMed PubMed Central

Yu, Y.J., Zhang, Y., Kenrick, M., Hoyte, K., Luk, W., Lu, Y., Atwal, J.K., Elliott, J.M., Prabhu, S., Watts, R.J., et al. (2011). Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci. Transl. Med. 3, 84ra44.10.1126/scitranslmed.3002230Search in Google Scholar PubMed

Yu, Y.J., Atwal, J.K., Zhang, Y., Tong, R.K., Wildsmith, K.R., Tan, C., Bien-Ly, N., Hersom, M., Maloney, J.A., Meilandt, W.J., et al. (2014). Therapeutic bispecific antibodies cross the blood-brain barrier in nonhuman primates. Sci. Transl. Med. 6, 261ra154.10.1126/scitranslmed.3009835Search in Google Scholar PubMed


Supplemental Material:

The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2017-0311).


Received: 2017-12-15
Accepted: 2018-02-08
Published Online: 2018-02-20
Published in Print: 2018-06-27

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 10.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2017-0311/pdf
Scroll to top button