Startseite Production of recombinant porin from Y. pseudotuberculosis in a water-soluble form for pseudotuberculosis diagnostics
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Production of recombinant porin from Y. pseudotuberculosis in a water-soluble form for pseudotuberculosis diagnostics

  • Vasily Golotin EMAIL logo , Olga Portnyagina , Natalia Chopenko , Natalia Kim , Valery Rasskazov und Olga Novikova
Veröffentlicht/Copyright: 19. Juli 2017

Abstract

OmpF porin from the outer membrane of Yersinia pseudotuberculosis was cloned into pET-40b(+) plasmid. Using E. coli Rosetta (DE3) strain, MX medium, IPTG concentration of 0.2 mm and post-induction cultivation at 14°C overnight allowed us to obtain a water-soluble form of the recombinant protein (rs-OmpF). Rs-OmpF was shown to have the ordered spatial structure at the levels of secondary and tertiary structure. Rs-OmpF was found to be effective as diagnostic antigen in ELISA for pseudotuberculosis diagnostics.

Acknowledgements

The work was partially supported by the grant 15-I-5-004 of Basic Research under FEB RAS program ‘Far East’ and also by the grant 15-15-00035 of Russian Science Foundation in the part of obtaining of the recombinant proteins.

References

Achouak, W., Heulin, T., and Pages, J.M. (2001). Multiple facets of bacterial porins. FEMS Microbiol. Lett. 99, 1–7.10.1111/j.1574-6968.2001.tb10642.xSuche in Google Scholar

Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.10.1016/0003-2697(76)90527-3Suche in Google Scholar

Burstein, E.A., Vedenkina, N.S., and Ivkova, M.N. (1973). Fluorescence and the location of tryptophan residues in protein molecules. Photochem. Photobiol. 8, 263–279.10.1111/j.1751-1097.1973.tb06422.xSuche in Google Scholar PubMed

Delcour, A.H. (2003). Solute uptake through general porins. Front. Biosci. 8, 1055–1071.10.2741/1132Suche in Google Scholar PubMed

Feis, A., Tofani, L., De Sanctis, G., Coletta, M., and Smulevich, G. (2007). Multiphasic kinetics of myoglobin/sodium dodecyl sulfate complex formation. Biophys. J. 92, 4078–4087.10.1529/biophysj.106.100693Suche in Google Scholar PubMed PubMed Central

Golotin, V., Balabanova, L., Likhatskaya, G., and Rasskazov, V. (2015). Recombinant production and characterization of a highly active alkaline phosphatase from marine bacterium Cobetia marina. Mar. Biotech. 17, 130–143.10.1007/s10126-014-9601-0Suche in Google Scholar PubMed

Golotin, V.A., Balabanova, L.A., Noskova, Yu.A., Slepchenko, L.V., Bakunina, I.Yu., Vorobieva, N.S., Terenteva, N.A., and Rasskazov, V.A. (2016). Optimization of cold-adapted alpha-galactosidase expression in Escherichia coli. Protein Expr. Purif. 123, 14–18.10.1016/j.pep.2016.03.006Suche in Google Scholar PubMed

Gordeets, A.V., Portnyagina, O.Yu., Vostrikova, O.P., Malashenkova, V.G., Beniova, S.N., Novikova, O.D., and Solov’eva, T.F. (2000). The method of diagnosis of pseudotuberculosis. Patent RF 2153172 No 98122085/14, 8.Suche in Google Scholar

Haebel, P.W., Goldstone, D., Katzen, F., Beckwith, J., and Metcalf, P. (2002). The disulfide bond isomerase DsbC is activated by an immunoglobulin-fold thiol oxidoreductase: crystal structure of the DsbC–DsbDα complex. EMBO J. 21, 4774–4784.10.1093/emboj/cdf489Suche in Google Scholar PubMed PubMed Central

Hargreaves, C.E., Grasso, M., Hampe, C.S., Stenkova, A., Atkinson, S., Joshua, G.W.P., Wren, B.W., Buckle, A.M., Dunn-Walters, D., and Banga, J.P. (2013). Yersinia enterocolitica provides the link between thyroid-stimulating antibodies and their germline counterparts in Graves’ disease. J. Immunol. 190, 5373–5384.10.4049/jimmunol.1203412Suche in Google Scholar PubMed

Kataeva, I., Chang, J., Xu, H., Luan, C.H., Zhou, J., Uversky, V.N., Lin, D., Horanyi, P., Liu, Z.J., Ljungdahl, L.G., et al. (2005). Improving solubility of Shewanella oneidensis MR-1 and Clostridium thermocellum JW-20 proteins expressed into Esherichia coli. J. Proteome Res. 4, 1942–1951.10.1021/pr050108jSuche in Google Scholar PubMed

Khomenko, V.A., Portniagina, O.Yu., Novikova, O.D., Isaeva, M.P., Kim, N.Yu., Likhatskaya, G.N., Vostrikova, O.P., and Solov’eva, T.F. (2008). Isolation and characterization of recombinant OmpF-like porin from the Yersinia pseudotuberculosis outer membrane. Bioorg. Khim. 34, 177–184.10.1134/S1068162008020040Suche in Google Scholar

Knowles, D., Li, H., and Pastoret, P.-P. (2009). Biotechnology in the diagnosis of infectious diseases and vaccine development. En: OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animals, France, Cap.1.1.7.Suche in Google Scholar

Kurganov, B.I. and Topchieva, I.N. (1998). Artificial chaperone-assisted refolding of proteins. Biokhimiya (Moscow) 63, 491–499.Suche in Google Scholar

Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of the bacteriophage T7. Nature 227, 680–685.10.1038/227680a0Suche in Google Scholar

Marquardt, D.W. (1963). An algorithm for least-squares estimation of non-linear parameters. J. Soc. Indust. Appl. Math. 11, 431–441.10.1137/0111030Suche in Google Scholar

Nikaido, H. (2003). Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67, 593–656.10.1128/MMBR.67.4.593-656.2003Suche in Google Scholar

Novikova, O.D., Likhatskaya, G.N., Frolova, G.M., Vostrikova, O.P., Khomenko, V.A., Timchenko, N.F., Solov’eva, T.F., and Ovodov, Y.S. (1990). Molecular structure and biological activity of yersinin, a porin from Yersinia pseudotuberculosis. Biol. Membr. 7, 453–461.Suche in Google Scholar

Pawar, S.A. and Deshpande, V.V. (2000). Characterization of acid-induced unfolding intermediates of glucose/xylose isomerase. Eur. J. Biochem. 267, 6331–6338.10.1046/j.1432-1327.2000.01686.xSuche in Google Scholar

Portnyagina, O.Yu., Sidorova, O.V., Khomenko, V.A., Novikova, O.D., Issaeva, M.P., and Solov’eva, T.F. (2012). Immunochemical properties of recombinant OmpF porin from outer membrane of Yersinia pseudotuberculosis. Trends Immunolab. Rel. Tech. 243–258.10.5772/35207Suche in Google Scholar

Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual (New York, USA: CSHL Press).Suche in Google Scholar

Schulz, G.E. (2002). The structure of bacterial outer membrane proteins. Biochim. Biophys. Acta 1565, 308–317.10.1016/S0005-2736(02)00577-1Suche in Google Scholar

Sreerama, N. and Woody, R.W. (2000). Estimation of protein secondary structure from CD spectra: comparison of CONTIN, SELCON and CDSSTR methods with an expanded reference set. Anal. Biochem. 287, 252–260.10.1006/abio.2000.4880Suche in Google Scholar PubMed

Volonte, F., Marinelli, F., Gastaldo, L., Sacchi, S., Pilone, M.S., Pollegioni, L., and Molla, G. (2008). Optimization of glutaryl-7-aminocephalosporanic acid acylase expression in E. coli. Protein Expr. Purif. 61, 131–137.10.1016/j.pep.2008.05.010Suche in Google Scholar PubMed

Voulhoux, R., Bos, M.P., Geurtsen, J., Mols, M., and Tommassen, J. (2003). Role of highly conserved bacterial protein in outer membrane protein assembly. Science 299, 262–265.10.1126/science.1078973Suche in Google Scholar PubMed

Winder, A.F. and Gent, W.L.G. (1971). Correction of light-scattering errors in spectrophotometric protein determinations. Biopolymers 10, 1243–1251.10.1002/bip.360100713Suche in Google Scholar PubMed

Received: 2017-4-18
Accepted: 2017-7-10
Published Online: 2017-7-19
Published in Print: 2017-10-26

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 19.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2017-0142/html
Button zum nach oben scrollen