Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is the etiological agent of three human malignancies: Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease. To persist and replicate within host cells, KSHV encodes proteins that modulate different signaling pathways. Manipulation of cell survival and proliferative networks by KSHV can promote the development of KSHV-associated malignancies. In this review, we discuss recent updates on KSHV pathogenesis and the viral life cycle. We focus on proteins encoded by KSHV that modulate the phosphatidylinositol-4,5-bisphosphate 3 kinase and extracellular signal-regulated kinases 1/2 pathways to create an environment favorable for viral replication and the development of KSHV malignancies.
Acknowledgements
We apologize for not citing many publications due to a reference limit per journal policy. We thank the members of the Damania lab for helpful discussions. Our work is supported by public health service grants CA019014, CA096500, CA163217, and DE023946. BD is a Leukemia and Lymphoma Society Scholar, and a Burroughs Wellcome Fund Investigator in Infectious Disease. J.P.W. was supported in part by the National Institutes of Health training grant T32 AI007419.
References
Anders, P., Bhende, P.M., Foote, M., Dittmer, D.P., Park, S.I., and Damania, B. (2015). Dual inhibition of phosphatidylinositol 3-kinase/mammalian target of rapamycin and mitogen activated protein kinase pathways in non-Hodgkin lymphoma. Leuk. Lymphoma 56, 263–266.10.3109/10428194.2014.917639Search in Google Scholar PubMed PubMed Central
Anders, P.M., Zhang, Z., Bhende, P.M., Giffin, L., and Damania, B. (2016). The KSHV K1 protein modulates AMPK function to enhance cell survival. PLoS Path. 12, e1005985.10.1371/journal.ppat.1005985Search in Google Scholar PubMed PubMed Central
Avey, D., Tepper, S., Li, W., Turpin, Z., and Zhu, F. (2015). Phosphoproteomic analysis of KSHV-infected cells reveals roles of ORF45-activated RSK during lytic replication. PLoS Path. 11, e1004993.10.1371/journal.ppat.1004993Search in Google Scholar PubMed PubMed Central
Avey, D., Tepper, S., Pifer, B., Bahga, A., Williams, H., Gillen, J., Li, W., Ogden, S., and Zhu, F. (2016). Discovery of a coregulatory interaction between Kaposi’s sarcoma-associated herpesvirus ORF45 and the viral protein kinase ORF36. J. Virol. 90, 5953–5964.10.1128/JVI.00516-16Search in Google Scholar PubMed PubMed Central
Bais, C., Santomasso, B., Coso, O., Arvanitakis, L., Raaka, E.G., Gutkind, J.S., Asch, A.S., Cesarman, E., Gershengorn, M.C., and Mesri, E.A. (1998). G-protein-coupled receptor of Kaposi’s sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature 391, 86–89.10.1038/34193Search in Google Scholar PubMed
Bais, C., Van Geelen, A., Eroles, P., Mutlu, A., Chiozzini, C., Dias, S., Silverstein, R.L., Rafii, S., and Mesri, E.A. (2003). Kaposi’s sarcoma associated herpesvirus G protein-coupled receptor immortalizes human endothelial cells by activation of the VEGF receptor-2/KDR. Cancer Cell 3, 131–143.10.1016/S1535-6108(03)00024-2Search in Google Scholar
Bakken, T., He, M., and Cannon, M.L. (2010). The phosphatase Shp2 is required for signaling by the Kaposi’s sarcoma-associated herpesvirus viral GPCR in primary endothelial cells. Virology 397, 379–388.10.1016/j.virol.2009.11.030Search in Google Scholar PubMed PubMed Central
Bhatt, A.P. and Damania, B. (2012). AKTivation of PI3K/AKT/mTOR signaling pathway by KSHV. Front. Immunol. 3, 401.10.3389/fimmu.2012.00401Search in Google Scholar PubMed PubMed Central
Bhatt, A.P., Bhende, P.M., Sin, S.H., Roy, D., Dittmer, D.P., and Damania, B. (2010). Dual inhibition of PI3K and mTOR inhibits autocrine and paracrine proliferative loops in PI3K/Akt/mTOR-addicted lymphomas. Blood 115, 4455–4463.10.1182/blood-2009-10-251082Search in Google Scholar PubMed PubMed Central
Bhatt, A.P., Wong, J.P., Weinberg, M.S., Host, K.M., Giffin, L.C., Buijnink, J., van Dijk, E., Izumiya, Y., Kung, H.J., Temple, B.R., et al. (2016). A viral kinase mimics S6 kinase to enhance cell proliferation. Proc. Natl. Acad. Sci. USA 113, 7876–7881.10.1073/pnas.1600587113Search in Google Scholar PubMed PubMed Central
Brinkmann, M.M., Glenn, M., Rainbow, L., Kieser, A., Henke-Gendo, C., and Schulz, T.F. (2003). Activation of mitogen-activated protein kinase and NF-κB pathways by a Kaposi’s sarcoma-associated herpesvirus K15 membrane protein. J. Virol. 77, 9346–9358.10.1128/JVI.77.17.9346-9358.2003Search in Google Scholar PubMed PubMed Central
Chandran, B. and Sharma-Walia, N. (2009). KSHV entry and infection of target cells. In: DNA Tumor Viruses. B. Damania and J. Pipas, eds. (New York: Springer USA), pp. 583–609.10.1007/978-0-387-68945-6_23Search in Google Scholar
Giffin, L., West, J.A., and Damania, B. (2015). Kaposi’s sarcoma-associated herpesvirus interleukin-6 modulates endothelial cell movement by upregulating cellular genes involved in migration. mBio 6, e01499–e01415.10.1128/mBio.01499-15Search in Google Scholar PubMed PubMed Central
Goncalves, P.H., Ziegelbauer, J., Uldrick, T.S., and Yarchoan, R. (2017). Kaposi sarcoma herpesvirus-associated cancers and related diseases. Curr. Opin. HIV AIDS 12, 47–56.10.1097/COH.0000000000000330Search in Google Scholar PubMed PubMed Central
Gramolelli, S., Weidner-Glunde, M., Abere, B., Viejo-Borbolla, A., Bala, K., Ruckert, J., Kremmer, E., and Schulz, T.F. (2015). Inhibiting the recruitment of PLCgamma1 to Kaposi’s sarcoma herpesvirus K15 protein reduces the invasiveness and angiogenesis of infected endothelial cells. PLoS Path. 11, e1005105.10.1371/journal.ppat.1005105Search in Google Scholar PubMed PubMed Central
Guo, H.G., Sadowska, M., Reid, W., Tschachler, E., Hayward, G., and Reitz, M. (2003). Kaposi’s sarcoma-like tumors in a human herpesvirus 8 ORF74 transgenic mouse. J. Virol. 77, 2631–2639.10.1128/JVI.77.4.2631-2639.2003Search in Google Scholar
Hahn, A.S., Kaufmann, J.K., Wies, E., Naschberger, E., Panteleev-Ivlev, J., Schmidt, K., Holzer, A., Schmidt, M., Chen, J., Konig, S., et al. (2012). The ephrin receptor tyrosine kinase A2 is a cellular receptor for Kaposi’s sarcoma-associated herpesvirus. Nat. Med. 18, 961–966.10.1038/nm.2805Search in Google Scholar PubMed PubMed Central
Hamza, M.S., Reyes, R.A., Izumiya, Y., Wisdom, R., Kung, H.J., and Luciw, P.A. (2004). ORF36 protein kinase of Kaposi’s sarcoma herpesvirus activates the c-Jun N-terminal kinase signaling pathway. J. Biol. Chem. 279, 38325–38330.10.1074/jbc.M400964200Search in Google Scholar PubMed
Hu, M., Wang, C., Li, W., Lu, W., Bai, Z., Qin, D., Yan, Q., Zhu, J., Krueger, B.J., Renne, R., et al. (2015). A KSHV microRNA directly targets G protein-coupled receptor kinase 2 to promote the migration and invasion of endothelial cells by inducing CXCR2 and activating AKT signaling. PLoS Path. 11, e1005171.10.1371/journal.ppat.1005171Search in Google Scholar PubMed PubMed Central
Koon, H.B., Krown, S.E., Lee, J.Y., Honda, K., Rapisuwon, S., Wang, Z., Aboulafia, D., Reid, E.G., Rudek, M.A., Dezube, B.J., et al. (2014). Phase II trial of imatinib in AIDS-associated Kaposi’s sarcoma: AIDS Malignancy Consortium Protocol 042. J. Clin. Oncol. 32, 402–408.10.1200/JCO.2012.48.6365Search in Google Scholar PubMed PubMed Central
Lee, B.S., Lee, S.H., Feng, P., Chang, H., Cho, N.H., and Jung, J.U. (2005). Characterization of the Kaposi’s sarcoma-associated herpesvirus K1 signalosome. J. Virol. 79, 12173–12184.10.1128/JVI.79.19.12173-12184.2005Search in Google Scholar PubMed PubMed Central
Letang, E., Lewis, J.J., Bower, M., Mosam, A., Borok, M., Campbell, T.B., Naniche, D., Newsom-Davis, T., Shaik, F., Fiorillo, S., et al. (2013). Immune reconstitution inflammatory syndrome associated with Kaposi sarcoma: higher incidence and mortality in Africa than in the UK. AIDS 27, 1603–1613.10.1097/QAD.0b013e328360a5a1Search in Google Scholar PubMed
Martin, D.F., Kuppermann, B.D., Wolitz, R.A., Palestine, A.G., Li, H., and Robinson, C.A. (1999). Oral ganciclovir for patients with cytomegalovirus retinitis treated with a ganciclovir implant. Roche Ganciclovir Study Group. N. Engl. J. Med. 340, 1063–1070.10.1056/NEJM199904083401402Search in Google Scholar PubMed
Mendoza, M.C., Er, E.E., and Blenis, J. (2011). The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem. Sci. 36, 320–328.10.1016/j.tibs.2011.03.006Search in Google Scholar PubMed PubMed Central
Mutlu, A.D., Cavallin, L.E., Vincent, L., Chiozzini, C., Eroles, P., Duran, E.M., Asgari, Z., Hooper, A.T., La Perle, K.M., Hilsher, C., et al. (2007). In vivo-restricted and reversible malignancy induced by human herpesvirus-8 KSHV: a cell and animal model of virally induced Kaposi’s sarcoma. Cancer Cell 11, 245–258.10.1016/j.ccr.2007.01.015Search in Google Scholar PubMed PubMed Central
Pan, H., Xie, J., Ye, F., and Gao, S.J. (2006). Modulation of Kaposi’s sarcoma-associated herpesvirus infection and replication by MEK/ERK, JNK, and p38 multiple mitogen-activated protein kinase pathways during primary infection. J. Virol. 80, 5371–5382.10.1128/JVI.02299-05Search in Google Scholar PubMed PubMed Central
Qin, Z., Dai, L., Defee, M., Findlay, V.J., Watson, D.K., Toole, B.P., Cameron, J., Peruzzi, F., Kirkwood, K., and Parsons, C. (2013). Kaposi’s sarcoma-associated herpesvirus suppression of DUSP1 facilitates cellular pathogenesis following de novo infection. J. Virol. 87, 621–635.10.1128/JVI.01441-12Search in Google Scholar PubMed PubMed Central
Sharma-Walia, N., Krishnan, H.H., Naranatt, P.P., Zeng, L., Smith, M.S., and Chandran, B. (2005). ERK1/2 and MEK1/2 induced by Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) early during infection of target cells are essential for expression of viral genes and for establishment of infection. J. Virol. 79, 10308–10329.10.1128/JVI.79.16.10308-10329.2005Search in Google Scholar PubMed PubMed Central
Sin, S.H. and Dittmer, D.P. (2013). Viral latency locus augments B-cell response in vivo to induce chronic marginal zone enlargement, plasma cell hyperplasia, and lymphoma. Blood 121, 2952–2963.10.1182/blood-2012-03-415620Search in Google Scholar PubMed PubMed Central
Sin, S.H., Roy, D., Wang, L., Staudt, M.R., Fakhari, F.D., Patel, D.D., Henry, D., Harrington, W.J., Jr., Damania, B.A., and Dittmer, D.P. (2007). Rapamycin is efficacious against primary effusion lymphoma (PEL) cell lines in vivo by inhibiting autocrine signaling. Blood 109, 2165–2173.10.1182/blood-2006-06-028092Search in Google Scholar PubMed PubMed Central
Stallone, G., Schena, A., Infante, B., Di Paolo, S., Loverre, A., Maggio, G., Ranieri, E., Gesualdo, L., Schena, F.P., and Grandaliano, G. (2005). Sirolimus for Kaposi’s sarcoma in renal-transplant recipients. N. Engl. J. Med. 352, 1317–1323.10.1056/NEJMoa042831Search in Google Scholar PubMed
Steinbruck, L., Gustems, M., Medele, S., Schulz, T.F., Lutter, D., and Hammerschmidt, W. (2015). K1 and K15 of Kaposi’s sarcoma-associated herpesvirus are partial functional homologues of latent membrane protein 2A of Epstein-Barr virus. J. Virol. 89, 7248–7261.10.1128/JVI.00839-15Search in Google Scholar PubMed PubMed Central
Uldrick, T.S., Polizzotto, M.N., Aleman, K., O’Mahony, D., Wyvill, K.M., Wang, V., Marshall, V., Pittaluga, S., Steinberg, S.M., Tosato, G., et al. (2011). High-dose zidovudine plus valganciclovir for Kaposi sarcoma herpesvirus-associated multicentric Castleman disease: a pilot study of virus-activated cytotoxic therapy. Blood 117, 6977–6986.10.1182/blood-2010-11-317610Search in Google Scholar PubMed PubMed Central
Xie, J., Ajibade, A.O., Ye, F., Kuhne, K., and Gao, S.J. (2008). Reactivation of Kaposi’s sarcoma-associated herpesvirus from latency requires MEK/ERK, JNK and p38 multiple mitogen- activated protein kinase pathways. Virology 371, 139–154.10.1016/j.virol.2007.09.040Search in Google Scholar PubMed PubMed Central
Ye, F., Lei, X., and Gao, S.J. (2011). Mechanisms of Kaposi’s sarcoma-associated herpesvirus latency and reactivation. Adv. Virol. 2011, 193860.10.1155/2011/193860Search in Google Scholar PubMed PubMed Central
Zhang, Z., Chen, W., Sanders, M.K., Brulois, K.F., Dittmer, D.P., and Damania, B. (2016). The K1 Protein of Kaposi’s sarcoma-associated herpesvirus augments viral lytic replication. J. Virol. 90, 7657–7666.10.1128/JVI.03102-15Search in Google Scholar PubMed PubMed Central
Zhu, X., Guo, Y., Yao, S., Yan, Q., Xue, M., Hao, T., Zhou, F., Zhu, J., Qin, D., and Lu, C. (2014). Synergy between Kaposi’s sarcoma-associated herpesvirus (KSHV) vIL-6 and HIV-1 Nef protein in promotion of angiogenesis and oncogenesis: role of the AKT signaling pathway. Oncogene 33, 1986–1996.10.1038/onc.2013.136Search in Google Scholar PubMed
©2017 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Guest Editorial
- Viruses and cancer: molecular relations and perspectives
- HIGHLIGHT: VIRUSES AND CANCER
- Chronic viral hepatitis and its association with liver cancer
- The biology of JC polyomavirus
- Rhadinoviral interferon regulatory factor homologues
- Human papillomavirus first and second generation vaccines–current status and future directions
- Employing RNA viruses to fight cancer: novel insights into oncolytic virotherapy
- Modulation of oncogenic signaling networks by Kaposi’s sarcoma-associated herpesvirus
- Mechanisms and strategies of papillomavirus replication
- Review
- MicroRNAs are important regulators of drug resistance in colorectal cancer
- Research Articles/Short Communications
- Molecular Medicine
- In vitro modelling of familial amyloidotic polyneuropathy allows quantitative detection of transthyretin amyloid fibril-like structures in hepatic derivatives of patient-specific induced pluripotent stem cells
Articles in the same Issue
- Frontmatter
- Guest Editorial
- Viruses and cancer: molecular relations and perspectives
- HIGHLIGHT: VIRUSES AND CANCER
- Chronic viral hepatitis and its association with liver cancer
- The biology of JC polyomavirus
- Rhadinoviral interferon regulatory factor homologues
- Human papillomavirus first and second generation vaccines–current status and future directions
- Employing RNA viruses to fight cancer: novel insights into oncolytic virotherapy
- Modulation of oncogenic signaling networks by Kaposi’s sarcoma-associated herpesvirus
- Mechanisms and strategies of papillomavirus replication
- Review
- MicroRNAs are important regulators of drug resistance in colorectal cancer
- Research Articles/Short Communications
- Molecular Medicine
- In vitro modelling of familial amyloidotic polyneuropathy allows quantitative detection of transthyretin amyloid fibril-like structures in hepatic derivatives of patient-specific induced pluripotent stem cells