In vitro modelling of familial amyloidotic polyneuropathy allows quantitative detection of transthyretin amyloid fibril-like structures in hepatic derivatives of patient-specific induced pluripotent stem cells
-
Jeannine Hoepfner
, Mandy Kleinsorge , Oliver Papp , Susanne Alfken , Robin Heiringhoff , Andreas Pich , Vanessa Sauer , Andree Zibert , Gudrun Göhring , Hartmut Schmidt , Malte Sgodda and Tobias Cantz
Abstract
The transthyretin protein is thermodynamically destabilised by mutations in the transthyretin gene, promoting the formation of amyloid fibrils in various tissues. Consequently, impaired autonomic organ function is observed in patients suffering from transthyretin-related familial amyloidotic polyneuropathy (FAP). The influence of individual genetic backgrounds on fibril formation as a potential cause of genotype-phenotype variations needs to be investigated in order to ensure efficient patient-specific therapies. We reprogrammed FAP patient fibroblasts to induced pluripotent stem (iPS) cells and differentiated these cells into transthyretin-expressing hepatocyte-like cells (HLCs). HLCs differentiated from FAP iPS cells and healthy control iPS cells secreted the transthyretin protein in similar concentrations. Mass spectrometry revealed the presence of mutant transthyretin protein in FAP HLC supernatants. In comparison to healthy control iPS cells, we demonstrated the formation of transthyretin amyloid fibril-like structures in FAP HLC supernatants using the amyloid-specific dyes Congo red and thioflavin T. These dyes were also applicable for the quantitative determination of in vitro formed transthyretin fibril-like structures. Moreover, we confirmed the inhibition of fibril formation by the TTR kinetic stabiliser diclofenac. Thioflavin T fluorescence intensity measurements even allowed the quantification of amyloid fibril-like structures in 96-well plate formats as a prerequisite for patient-specific drug screening approaches.
Acknowledgements
This work was supported by funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) for the Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy; EXC 62/3) and by the state of North Rhine-Westphalia through the initiative Translational Stem Cell Research (PtJ-Az: w1403ts011b).
Conflict of interest statement:The authors declare that there is no conflict of interest regarding the publication of this article.
References
Ackermann, E.J., Guo, S., Booten, S., Alvarado, L., Benson, M., Hughes, S., and Monia, B.P. (2012). Clinical development of an antisense therapy for the treatment of transthyretin-associated polyneuropathy. Amyloid 19 (Suppl. 1), 43–44.10.3109/13506129.2012.673140Search in Google Scholar PubMed
Ando, Y., Tanaka, Y., Nakazato, M., Ericzon, B.G., Yamashita, T., Tashima, K., Sakashita, N., Suga, M., Uchino, M., and Ando, M. (1995). Change in variant transthyretin levels in patients with familial amyloidotic polyneuropathy type I following liver transplantation. Biochem. Biophys. Res. Commun. 211, 354–358.10.1006/bbrc.1995.1820Search in Google Scholar PubMed
Ando, Y., Nakamura, M., and Araki, S. (2005). Transthyretin-related familial amyloidotic polyneuropathy. Arch. Neurol. 62, 1057–1062.10.1001/archneur.62.7.1057Search in Google Scholar PubMed
Ando, Y., Coelho, T., Berk, J.L., Cruz, M.W., Ericzon, B.G., Ikeda, S., Lewis, W.D., Obici, L., Plante-Bordeneuve, V., Rapezzi, C., et al. (2013). Guideline of transthyretin-related hereditary amyloidosis for clinicians. Orphanet J. Rare Dis. 8, 31.10.1186/1750-1172-8-31Search in Google Scholar PubMed PubMed Central
Ankarcrona, M., Winblad, B., Monteiro, C., Fearns, C., Powers, E.T., Johansson, J., Westermark, G.T., Presto, J., Ericzon, B.G., and Kelly, J.W. (2016). Current and future treatment of amyloid diseases. J. Intern. Med. 280, 177–202.10.1111/joim.12506Search in Google Scholar PubMed PubMed Central
Arosio, P., Owczarz, M., Muller-Spath, T., Rognoni, P., Beeg, M., Wu, H., Salmona, M., and Morbidelli, M. (2012). In vitro aggregation behavior of a non-amyloidogenic lambda light chain dimer deriving from U266 multiple myeloma cells. PLoS One 7, e33372.10.1371/journal.pone.0033372Search in Google Scholar PubMed PubMed Central
Batista, A.R., Sena-Esteves, M., and Saraiva, M.J. (2013). Hepatic production of transthyretin L12P leads to intracellular lysosomal aggregates in a new somatic transgenic mouse model. Biochim. Biophys. Acta 1832, 1183–1193.10.1016/j.bbadis.2013.04.001Search in Google Scholar PubMed
Berk, J.L., Suhr, O.B., Obici, L., Sekijima, Y., Zeldenrust, S.R., Yamashita, T., Heneghan, M.A., Gorevic, P.D., Litchy, W.J., Wiesman, J.F., et al. (2013). Repurposing diflunisal for familial amyloid polyneuropathy: a randomized clinical trial. J. Am. Med. Assoc. 310, 2658–2667.10.1001/jama.2013.283815Search in Google Scholar PubMed PubMed Central
Bulawa, C.E., Connelly, S., Devit, M., Wang, L., Weigel, C., Fleming, J.A., Packman, J., Powers, E.T., Wiseman, R.L., Foss, T.R., et al. (2012). Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade. Proc. Natl. Acad Sci. USA 109, 9629–9634.10.1073/pnas.1121005109Search in Google Scholar PubMed PubMed Central
Cai, J., Zhao, Y., Liu, Y., Ye, F., Song, Z., Qin, H., Meng, S., Chen, Y., Zhou, R., Song, X., et al. (2007). Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatology 45, 1229–1239.10.1002/hep.21582Search in Google Scholar PubMed
Cardoso, I., Almeida, M.R., Ferreira, N., Arsequell, G., Valencia, G., and Saraiva, M.J. (2007). Comparative in vitro and ex vivo activities of selected inhibitors of transthyretin aggregation: relevance in drug design. Biochem. J. 408, 131–138.10.1042/BJ20070689Search in Google Scholar PubMed PubMed Central
Carpentier, A., Nimgaonkar, I., Chu, V., Xia, Y., Hu, Z., and Liang, T.J. (2016). Hepatic differentiation of human pluripotent stem cells in miniaturized format suitable for high-throughput screen. Stem Cell Res. 16, 640–650.10.1016/j.scr.2016.03.009Search in Google Scholar PubMed PubMed Central
Coelho, T., Maia, L.F., Martins da Silva, A., Waddington Cruz, M., Plante-Bordeneuve, V., Lozeron, P., Suhr, O.B., Campistol, J.M., Conceicao, I.M., Schmidt, H.H., et al. (2012). Tafamidis for transthyretin familial amyloid polyneuropathy: a randomized, controlled trial. Neurology 79, 785–792.10.1212/WNL.0b013e3182661eb1Search in Google Scholar PubMed PubMed Central
Coelho, T., Adams, D., Silva, A., Lozeron, P., Hawkins, P.N., Mant, T., Perez, J., Chiesa, J., Warrington, S., Tranter, E., et al. (2013). Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N. Engl. J. Med. 369, 819–829.10.1056/NEJMoa1208760Search in Google Scholar PubMed
Eisert, R., Felau, L., and Brown, L.R. (2006). Methods for enhancing the accuracy and reproducibility of Congo red and thioflavin T assays. Anal. Biochem. 353, 144–146.10.1016/j.ab.2006.03.015Search in Google Scholar PubMed
Garcia-Herola, A., Prieto, M., Pascual, S., Berenguer, M., Lopez-Viedma, B., Mir, J., Vilchez, J.J., and Berenguer, J. (1999). Progression of cardiomyopathy and neuropathy after liver transplantation in a patient with familial amyloidotic polyneuropathy caused by tyrosine-77 transthyretin variant. Liver Transpl. Surg. 5, 246–248.10.1002/lt.500050309Search in Google Scholar PubMed
Hoepfner, J., Kleinsorge, M., Papp, O., Ackermann, M., Alfken, S., Rinas, U., Solodenko, W., Kirschning, A., Sgodda, M., and Cantz, T. (2016). Biphasic modulation of Wnt signaling supports efficient foregut endoderm formation from human pluripotent stem cells. Cell Biol. Int. 40, 534–548.10.1002/cbin.10590Search in Google Scholar PubMed
Holmgren, G., Costa, P.M., Andersson, C., Asplund, K., Steen, L., Beckman, L., Nylander, P.O., Teixeira, A., Saraiva, M.J., and Costa, P.P. (1994). Geographical distribution of TTR met30 carriers in northern Sweden: discrepancy between carrier frequency and prevalence rate. J. Med. Genet. 31, 351–354.10.1136/jmg.31.5.351Search in Google Scholar PubMed PubMed Central
Ikeda, S., Hanyu, N., Hongo, M., Yoshioka, J., Oguchi, H., Yanagisawa, N., Kobayashi, T., Tsukagoshi, H., Ito, N., and Yokota, T. (1987). Hereditary generalized amyloidosis with polyneuropathy. Clinicopathological study of 65 Japanese patients. Brain 110, 315–337.10.1093/brain/110.2.315Search in Google Scholar PubMed
Ingbar, S.H. (1963). Observations concerning the binding of thyroid hormones by human serum prealbumin. J. Clin. Invest. 42, 143–160.10.1172/JCI104701Search in Google Scholar PubMed PubMed Central
Isono, K., Jono, H., Ohya, Y., Shiraki, N., Yamazoe, T., Sugasaki, A., Era, T., Fusaki, N., Tasaki, M., Ueda, M., et al. (2014). Generation of familial amyloidotic polyneuropathy-specific induced pluripotent stem cells. Stem Cell Res. 12, 574–583.10.1016/j.scr.2014.01.004Search in Google Scholar
Jochim, N., Gerhard, R., Just, I., and Pich, A. (2014). Time-resolved cellular effects induced by TcdA from Clostridium difficile. Rapid Commun. Mass Spectrom. 28, 1089–1100.10.1002/rcm.6882Search in Google Scholar
Kanai, M., Raz, A., and Goodman, D.S. (1968). Retinol-binding protein: the transport protein for vitamin A in human plasma. J. Clin. Invest. 47, 2025–2044.10.1172/JCI105889Search in Google Scholar
Kanda, Y., Goodman, D.S., Canfield, R.E., and Morgan, F.J. (1974). The amino acid sequence of human plasma prealbumin. J. Biol. Chem. 249, 6796–6805.10.1016/S0021-9258(19)42128-5Search in Google Scholar
Kempf, H., Olmer, R., Kropp, C., Ruckert, M., Jara-Avaca, M., Robles-Diaz, D., Franke, A., Elliott, D.A., Wojciechowski, D., Fischer, M., et al. (2014). Controlling expansion and cardiomyogenic differentiation of human pluripotent stem cells in scalable suspension culture. Stem Cell Rep. 3, 1132–1146.10.1016/j.stemcr.2014.09.017Search in Google Scholar PubMed PubMed Central
Khurana, R., Uversky, V.N., Nielsen, L., and Fink, A.L. (2001). Is Congo red an amyloid-specific dye? J. Biol. Chem. 276, 22715–22721.10.1074/jbc.M011499200Search in Google Scholar PubMed
Klabunde, T., Petrassi, H.M., Oza, V.B., Raman, P., Kelly, J.W., and Sacchettini, J.C. (2000). Rational design of potent human transthyretin amyloid disease inhibitors. Nat. Struct. Biol. 7, 312–321.10.1038/74082Search in Google Scholar PubMed
Kohno, K., Palha, J.A., Miyakawa, K., Saraiva, M.J., Ito, S., Mabuchi, T., Blaner, W.S., Iijima, H., Tsukahara, S., Episkopou, V., et al. (1997). Analysis of amyloid deposition in a transgenic mouse model of homozygous familial amyloidotic polyneuropathy. Am. J. Pathol. 150, 1497–1508.Search in Google Scholar
Leung, A., Nah, S.K., Reid, W., Ebata, A., Koch, C.M., Monti, S., Genereux, J.C., Wiseman, R.L., Wolozin, B., Connors, L.H., et al. (2013). Induced pluripotent stem cell modeling of multisystemic, hereditary transthyretin amyloidosis. Stem Cell Rep. 1, 451–463.10.1016/j.stemcr.2013.10.003Search in Google Scholar PubMed PubMed Central
Marcus, A., Sadimin, E., Richardson, M., Goodell, L., and Fyfe, B. (2012). Fluorescence microscopy is superior to polarized microscopy for detecting amyloid deposits in Congo red-stained trephine bone marrow biopsy specimens. Am. J. Clin. Pathol. 138, 590–593.10.1309/AJCP6HZI5DDQTCRMSearch in Google Scholar PubMed
Miller, S.R., Sekijima, Y., and Kelly, J.W. (2004). Native state stabilization by NSAIDs inhibits transthyretin amyloidogenesis from the most common familial disease variants. Lab Invest. 84, 545–552.10.1038/labinvest.3700059Search in Google Scholar PubMed
Moreira, L., Beirao, J.M., Beirao, I., and Pinho e Costa, P. (2015). Oligomeric TTR V30M aggregates compromise cell viability, erythropoietin gene expression and promoter activity in the human hepatoma cell line Hep3B. Amyloid 22, 93–99.10.3109/13506129.2015.1007497Search in Google Scholar
Obici, L., Cortese, A., Lozza, A., Lucchetti, J., Gobbi, M., Palladini, G., Perlini, S., Saraiva, M.J., and Merlini, G. (2012). Doxycycline plus tauroursodeoxycholic acid for transthyretin amyloidosis: a phase II study. Amyloid 19 (Suppl. 1), 34–36.10.3109/13506129.2012.678508Search in Google Scholar
Quintas, A., Vaz, D.C., Cardoso, I., Saraiva, M.J., and Brito, R.M. (2001). Tetramer dissociation and monomer partial unfolding precedes protofibril formation in amyloidogenic transthyretin variants. J. Biol. Chem. 276, 27207–27213.10.1074/jbc.M101024200Search in Google Scholar
Rashid, S.T., Corbineau, S., Hannan, N., Marciniak, S.J., Miranda, E., Alexander, G., Huang-Doran, I., Griffin, J., Ahrlund-Richter, L., Skepper, J., et al. (2010). Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. J. Clin. Invest. 120, 3127–3136.10.1172/JCI43122Search in Google Scholar
Rowczenio, D.M., Noor, I., Gillmore, J.D., Lachmann, H.J., Whelan, C., Hawkins, P.N., Obici, L., Westermark, P., Grateau, G., and Wechalekar, A.D. (2014). Online registry for mutations in hereditary amyloidosis including nomenclature recommendations. Hum. Mutat. 35, E2403–2412. Available at: http://amyloidosismutations.com/mut-attr.php, accessed July 11, 2016.10.1002/humu.22619Search in Google Scholar
Schlegelberger, B., Metzke, S., Harder, S., Zühlke-Jenisch, R., Zhang, Y., and Siebert, R. (1999). Diagnostic cytogenetics (New York: Springer).Search in Google Scholar
Sekijima, Y., Dendle, M.A., and Kelly, J.W. (2006). Orally administered diflunisal stabilizes transthyretin against dissociation required for amyloidogenesis. Amyloid 13, 236–249.10.1080/13506120600960882Search in Google Scholar
Sgodda, M., Möbus, S., Hoepfner, J., Sharma, A.D., Schambach, A., Greber, B., Ott, M., and Cantz, T. (2013). Improved hepatic differentiation strategies for human induced pluripotent stem cells. Curr. Mol. Med. 13, 842–855.10.2174/1566524011313050015Search in Google Scholar
Si-Tayeb, K., Noto, F.K., Nagaoka, M., Li, J., Battle, M.A., Duris, C., North, P.E., Dalton, S., and Duncan, S.A. (2010). Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology 51, 297–305.10.1002/hep.23354Search in Google Scholar
Soprano, D.R., Herbert, J., Soprano, K.J., Schon, E.A., and Goodman, D.S. (1985). Demonstration of transthyretin mRNA in the brain and other extrahepatic tissues in the rat. J. Biol. Chem. 260, 11793–11798.10.1016/S0021-9258(17)39100-7Search in Google Scholar
Sousa, A., Coelho, T., Barros, J., and Sequeiros, J. (1995). Genetic epidemiology of familial amyloidotic polyneuropathy (FAP)-type I in Povoa do Varzim and Vila do Conde (north of Portugal). Am. J. Med. Genet. 60, 512–521.10.1002/ajmg.1320600606Search in Google Scholar PubMed
Touboul, T., Hannan, N.R., Corbineau, S., Martinez, A., Martinet, C., Branchereau, S., Mainot, S., Strick-Marchand, H., Pedersen, R., Di Santo, J., et al. (2010). Generation of functional hepatocytes from human embryonic stem cells under chemically defined conditions that recapitulate liver development. Hepatology 51, 1754–1765.10.1002/hep.23506Search in Google Scholar PubMed
Wilczek, H.E., Larsson, M., and Ericzon, B.G. (2011). Long-term data from the Familial Amyloidotic Polyneuropathy World Transplant Registry (FAPWTR). Amyloid 18 (Suppl. 1), 193–195.10.3109/13506129.2011.574354072Search in Google Scholar PubMed
Yazaki, M., Tokuda, T., Nakamura, A., Higashikata, T., Koyama, J., Higuchi, K., Harihara, Y., Baba, S., Kametani, F., and Ikeda, S. (2000). Cardiac amyloid in patients with familial amyloid polyneuropathy consists of abundant wild-type transthyretin. Biochem. Biophys. Res. Commun. 274, 702–706.10.1006/bbrc.2000.3203Search in Google Scholar PubMed
Yi, S., Takahashi, K., Naito, M., Tashiro, F., Wakasugi, S., Maeda, S., Shimada, K., Yamamura, K., and Araki, S. (1991). Systemic amyloidosis in transgenic mice carrying the human mutant transthyretin (Met30) gene. Pathologic similarity to human familial amyloidotic polyneuropathy, type I. Am. J. Pathol. 138, 403–412.Search in Google Scholar
Zeldenrust, S.R. (2012). Genotype-phenotype correlation in FAP. Amyloid 19 (Suppl. 1), 22–24.10.3109/13506129.2012.665400Search in Google Scholar PubMed
Supplemental Material:
The online version of this article (DOI: https://doi.org/10.1515/hsz-2016-0258) offers supplementary material, available to authorized users.
©2017 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Guest Editorial
- Viruses and cancer: molecular relations and perspectives
- HIGHLIGHT: VIRUSES AND CANCER
- Chronic viral hepatitis and its association with liver cancer
- The biology of JC polyomavirus
- Rhadinoviral interferon regulatory factor homologues
- Human papillomavirus first and second generation vaccines–current status and future directions
- Employing RNA viruses to fight cancer: novel insights into oncolytic virotherapy
- Modulation of oncogenic signaling networks by Kaposi’s sarcoma-associated herpesvirus
- Mechanisms and strategies of papillomavirus replication
- Review
- MicroRNAs are important regulators of drug resistance in colorectal cancer
- Research Articles/Short Communications
- Molecular Medicine
- In vitro modelling of familial amyloidotic polyneuropathy allows quantitative detection of transthyretin amyloid fibril-like structures in hepatic derivatives of patient-specific induced pluripotent stem cells
Articles in the same Issue
- Frontmatter
- Guest Editorial
- Viruses and cancer: molecular relations and perspectives
- HIGHLIGHT: VIRUSES AND CANCER
- Chronic viral hepatitis and its association with liver cancer
- The biology of JC polyomavirus
- Rhadinoviral interferon regulatory factor homologues
- Human papillomavirus first and second generation vaccines–current status and future directions
- Employing RNA viruses to fight cancer: novel insights into oncolytic virotherapy
- Modulation of oncogenic signaling networks by Kaposi’s sarcoma-associated herpesvirus
- Mechanisms and strategies of papillomavirus replication
- Review
- MicroRNAs are important regulators of drug resistance in colorectal cancer
- Research Articles/Short Communications
- Molecular Medicine
- In vitro modelling of familial amyloidotic polyneuropathy allows quantitative detection of transthyretin amyloid fibril-like structures in hepatic derivatives of patient-specific induced pluripotent stem cells