Startseite Valproic acid (VPA) enhances cisplatin sensitivity of non-small cell lung cancer cells via HDAC2 mediated down regulation of ABCA1
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Valproic acid (VPA) enhances cisplatin sensitivity of non-small cell lung cancer cells via HDAC2 mediated down regulation of ABCA1

  • Jian-Hui Chen , Yu-Long Zheng , Chuan-Qin Xu , Li-Zhi Gu , Zong-Li Ding , Ling Qin , Yi Wang , Ran Fu , Yu-Feng Wan und Cheng-Ping Hu EMAIL logo
Veröffentlicht/Copyright: 20. Dezember 2016

Abstract

Valproic acid (VPA) has been suggested to be a histone deacetylase inhibitor (HDACI). Our present study revealed that VPA at 1 mm, which had no effect on cell proliferation, can significantly increase the sensitivity of non-small cell lung cancer (NSCLC) cells to cisplatin (DDP). VPA treatment markedly decreased the mRNA and protein levels of ABCA1, while had no significant effect on ABCA3, ABCA7 or ABCB10. Luciferase reporter assays showed that VPA can decrease the ABCA1 promoter activity in both A549 and H358 cells. VPA treatment also decreased the phosphorylation of SP1, which can bind to −100 and −166 bp in the promoter of ABCA1. While the phosphorylation of c-Fos and c-Jun were not changed in VPA treated NSCLC cells. Over expression of HDAC2 attenuated VPA induced down regulation of ABCA1 mRNA expression and promoter activities. Over expression of HDAC2 also attenuated VPA induced DDP sensitivity of NSCLC cells. These data revealed that VPA can increase the DDP sensitivity of NSCLC cells via down regulation of ABCA1 through HDAC2/SP1 signals. It suggested that combination of VPA and anticancer drugs such as DDP might be great helpful for treatment of NSCLC patients.

Keywords: ABCA1; DDP; HDAC2; NSCLC; VPA

Acknowledgments

This research was supported by Huai’an City Science and Technology Support Program (Social Development) Grant NO. HAS2015013-4.

References

Aupérin, A., Péchoux, C.L., Rolland, E., Curran, W.J., Furuse, K., Fournel, P., Belderbos, J., Clamon, G., Ulutin, H.C., Paulus, R., et al. (2010). Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J. Clin. Oncol. 28, 2181–2190.10.1200/JCO.2009.26.2543Suche in Google Scholar PubMed

Bachmeier, B.E., Iancu, C.M., Killian, P.H., Kronski, E., Mirisola, V., Angelini, G., Jochum, M., Nerlich, A.G., and Pfeffer, U. (2009). Overexpression of the ATP binding cassette gene ABCA1 determines resistance to Curcumin in M14 melanoma cells. Mol. Cancer 8, 129.10.1186/1476-4598-8-129Suche in Google Scholar PubMed PubMed Central

Blaheta, R.A. and Cinatl, J. (2002). Anti-tumor mechanisms of valproate: a novel role for an old drug. Med. Res. Rev. 22, 492–511.10.1002/med.10017Suche in Google Scholar PubMed

Catalano, M.G., Pugliese, M., Poli, R., Bosco, O., Bertieri, R., Fortunati, N., and Boccuzzi, G. (2009). Effects of the histone deacetylase inhibitor valproic acid on the sensitivity of anaplastic thyroid cancer cell lines to imatinib. Oncol. Rep. 21, 515–521.Suche in Google Scholar

Cha, H.-Y., Lee, B.-S., Kang, S., Shin, Y.S., Chang, J.W., Sung, E.-S., Kim, Y.-S., Choi, J.W., Kim, J.H., and Kim, C.-H. (2013). Valproic acid sensitizes TRAIL-resistant anaplastic thyroid carcinoma cells to apoptotic cell death. Ann. Surg. Oncol. 20(Suppl 3), S716–S724.10.1245/s10434-013-3232-ySuche in Google Scholar PubMed

Chang, A. (2011). Chemotherapy, chemoresistance and the changing treatment landscape for NSCLC. Lung Cancer 71, 3–10.10.1016/j.lungcan.2010.08.022Suche in Google Scholar PubMed

Chen, C.-J., Chang, W.-C., and Chen, B.-K. (2008). Attenuation of c-Jun and Sp1 expression and p300 recruitment to gene promoter confers the trichostatin A-induced inhibition of 12(S)-lipoxygenase expression in EGF-treated A431 cells. Eur. J. Pharmacol. 591, 36–42.10.1016/j.ejphar.2008.06.041Suche in Google Scholar PubMed

Das, C.M., Aguilera, D., Vasquez, H., Prasad, P., Zhang, M., Wolff, J.E., and Gopalakrishnan, V. (2007). Valproic acid induces p21 and topoisomerase-II (α/β) expression and synergistically enhances etoposide cytotoxicity in human glioblastoma cell lines. J. Neurooncol. 85, 159–170.10.1007/s11060-007-9402-7Suche in Google Scholar PubMed

Duenas-Gonzalez, A., Candelaria, M., Perez-Plascencia, C., Perez-Cardenas, E., de la Cruz-Hernandez, E., and Herrera, L.A. (2008). Valproic acid as epigenetic cancer drug: preclinical, clinical and transcriptional effects on solid tumors. Cancer Treat. Rev. 34, 206–222.10.1016/j.ctrv.2007.11.003Suche in Google Scholar PubMed

Falkenberg, K.J. and Johnstone, R.W. (2014). Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat. Rev. Drug Discov. 13, 673–691.10.1038/nrd4360Suche in Google Scholar PubMed

Fritsche, P., Seidler, B., Schüler, S., Schnieke, A., Göttlicher, M., Schmid, R.M., Saur, D., and Schneider, G. (2009). HDAC2 mediates therapeutic resistance of pancreatic cancer cells via the BH3-only protein NOXA. Gut 58, 1399–1409.10.1136/gut.2009.180711Suche in Google Scholar PubMed

Gao, D., Xia, Q., Lv, J., and Zhang, H. (2007). Chronic administration of valproic acid inhibits PC3 cell growth by suppressing tumor angiogenesis in vivo. Int. J. Urol. Off. J. Jpn. Urol. Assoc. 14, 838–845.10.1111/j.1442-2042.2007.01823.xSuche in Google Scholar PubMed

Ge, L.-C., Chen, Z.-J., Liu, H.-Y., Zhang, K.-S., Liu, H., Huang, H.-B., Zhang, G., Wong, C.K.C., Giesy, J.P., Du, J., et al. (2014). Involvement of activating ERK1/2 through G protein coupled receptor 30 and estrogen receptor α/β in low doses of bisphenol A promoting growth of Sertoli TM4 cells. Toxicol. Lett. 226, 81–89.10.1016/j.toxlet.2014.01.035Suche in Google Scholar PubMed

Göttlicher, M., Minucci, S., Zhu, P., Krämer, O.H., Schimpf, A., Giavara, S., Sleeman, J.P., Lo Coco, F., Nervi, C., Pelicci, P.G., et al. (2001). Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J. 20, 6969–6978.10.1093/emboj/20.24.6969Suche in Google Scholar PubMed PubMed Central

Jemal, A., Siegel, R., Ward, E., Murray, T., Xu, J., Smigal, C., and Thun, M.J. (2006). Cancer Statistics, 2006. CA Cancer J. Clin. 56, 106–130.10.3322/canjclin.56.2.106Suche in Google Scholar PubMed

Ji, M.-M., Wang, L., Zhan, Q., Xue, W., Zhao, Y., Zhao, X., Xu, P.-P., Shen, Y., Liu, H., Janin, A., et al. (2015). Induction of autophagy by valproic acid enhanced lymphoma cell chemosensitivity through HDAC-independent and IP3-mediated PRKAA activation. Autophagy 11, 2160–2171.10.1080/15548627.2015.1082024Suche in Google Scholar PubMed PubMed Central

Kohno, K., Uchiumi, T., Niina, I., Wakasugi, T., Igarashi, T., Momii, Y., Yoshida, T., Matsuo, K., Miyamoto, N., and Izumi, H. (2005). Transcription factors and drug resistance. Eur. J. Cancer 41, 2577–2586.10.1016/j.ejca.2005.08.007Suche in Google Scholar PubMed

Krämer, O.H., Zhu, P., Ostendorff, H.P., Golebiewski, M., Tiefenbach, J., Peters, M.A., Brill, B., Groner, B., Bach, I., Heinzel, T., et al. (2003). The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2. EMBO J. 22, 3411–3420.10.1093/emboj/cdg315Suche in Google Scholar PubMed PubMed Central

Lan, B., Hayama, E., Kawaguchi, N., Furutani, Y., and Nakanishi, T. (2015). Therapeutic efficacy of valproic acid in a combined monocrotaline and chronic hypoxia rat model of severe pulmonary hypertension. PLoS One 10, e0117211.10.1371/journal.pone.0117211Suche in Google Scholar PubMed PubMed Central

Lee, Y.-H., Seo, D., Choi, K.-J., Andersen, J.B., Won, M.-A., Kitade, M., Gómez-Quiroz, L.E., Judge, A.D., Marquardt, J.U., Raggi, C., et al. (2014). Antitumor effects in hepatocarcinoma of isoform-selective inhibition of HDAC2. Cancer Res. 74, 4752–4761.10.1158/0008-5472.CAN-13-3531Suche in Google Scholar PubMed PubMed Central

Ma, Y., Li, X., Cheng, S., Wei, W., and Li, Y. (2015). MicroRNA-106a confers cisplatin resistance in non-small cell lung cancer A549 cells by targeting adenosine triphosphatase-binding cassette A1. Mol. Med. Rep. 11, 625–632.10.3892/mmr.2014.2688Suche in Google Scholar PubMed

Miller, K.M., Tjeertes, J.V., Coates, J., Legube, G., Polo, S.E., Britton, S., and Jackson, S.P. (2010). Human HDAC1 and HDAC2 function in the DNA-damage response to promote DNA non-homologous end-joining. Nat. Struct. Mol. Biol. 17, 1144–1151.10.1038/nsmb.1899Suche in Google Scholar

Oiso, S., Takayama, Y., Nakazaki, R., Matsunaga, N., Motooka, C., Yamamura, A., Ikeda, R., Nakamura, K., Takeda, Y., and Kariyazono, H. (2014). Factors involved in the cisplatin resistance of KCP-4 human epidermoid carcinoma cells. Oncol. Rep. 31, 719–726.10.3892/or.2013.2896Suche in Google Scholar

Paino, F., La Noce, M., Tirino, V., Naddeo, P., Desiderio, V., Pirozzi, G., De Rosa, A., Laino, L., Altucci, L., and Papaccio, G. (2014). Histone deacetylase inhibition with valproic acid downregulates osteocalcin gene expression in human dental pulp stem cells and osteoblasts: evidence for HDAC2 involvement. Stem Cells 32, 279–289.10.1002/stem.1544Suche in Google Scholar

Pao, W. and Girard, N. (2011). New driver mutations in non-small-cell lung cancer. Lancet Oncol. 12, 175–180.10.1016/S1470-2045(10)70087-5Suche in Google Scholar

Sidana, A., Wang, M., Shabbeer, S., Chowdhury, W.H., Netto, G., Lupold, S.E., Carducci, M., and Rodriguez, R. (2012). Mechanism of growth inhibition of prostate cancer xenografts by valproic acid. J. Biomed. Biotechnol. 2012, 180363.10.1155/2012/180363Suche in Google Scholar PubMed PubMed Central

Singh, V., Bhatia, H.S., Kumar, A., de Oliveira, A.C.P., and Fiebich, B.L. (2014). Histone deacetylase inhibitors valproic acid and sodium butyrate enhance prostaglandins release in lipopolysaccharide-activated primary microglia. Neuroscience 265, 147–157.10.1016/j.neuroscience.2014.01.037Suche in Google Scholar PubMed

Venkatesh, P., Panyutin, I.V., Remeeva, E., Neumann, R.D., and Panyutin, I.G. (2016). Effect of chromatin structure on the extent and distribution of dna double strand breaks produced by ionizing radiation; comparative study of hESC and differentiated cells lines. Int. J. Mol. Sci. 17. pii: E58. DOI: 10.3390/ijms17010058.Suche in Google Scholar PubMed PubMed Central

Wagner, T., Kiweler, N., Wolff, K., Knauer, S.K., Brandl, A., Hemmerich, P., Dannenberg, J.-H., Heinzel, T., Schneider, G., and Krämer, O.H. (2015). Sumoylation of HDAC2 promotes NF-κB-dependent gene expression. Oncotarget 6, 7123–7135.10.18632/oncotarget.3344Suche in Google Scholar PubMed PubMed Central

Wang, N. and Tall, A.R. (2003). Regulation and mechanisms of ATP-binding cassette transporter A1-mediated cellular cholesterol efflux. Arterioscler. Thromb. Vasc. Biol. 23, 1178–1184.10.1161/01.ATV.0000075912.83860.26Suche in Google Scholar PubMed

Wang, D., Jing, Y., Ouyang, S., Liu, B., Zhu, T., Niu, H., and Tian, Y. (2013). Inhibitory effect of valproic acid on bladder cancer in combination with chemotherapeutic agents in vitro and in vivo. Oncol. Lett. 6, 1492–1498.10.3892/ol.2013.1565Suche in Google Scholar PubMed PubMed Central

Yang, X.-P., Freeman, L.A., Knapper, C.L., Amar, M.J.A., Remaley, A., Brewer, H.B., and Santamarina-Fojo, S. (2002). The E-box motif in the proximal ABCA1 promoter mediates transcriptional repression of the ABCA1 gene. J. Lipid Res. 43, 297–306.10.1016/S0022-2275(20)30172-3Suche in Google Scholar

Ye, P., Xing, H., Lou, F., Wang, K., Pan, Q., Zhou, X., Gong, L., and Li, D. (2016). Histone deacetylase 2 regulates doxorubicin (Dox) sensitivity of colorectal cancer cells by targeting ABCB1 transcription. Cancer Chemother. Pharmacol. 77, 613–621.10.1007/s00280-016-2979-9Suche in Google Scholar PubMed

Zhang, X., Yashiro, M., Ren, J., and Hirakawa, K. (2006). Histone deacetylase inhibitor, trichostatin A, increases the chemosensitivity of anticancer drugs in gastric cancer cell lines. Oncol. Rep. 16, 563–568.10.3892/or.16.3.563Suche in Google Scholar

Zhao, Y., Chen, X., Yang, H., Zhou, L., Okoro, E.U., and Guo, Z. (2011). A novel function of apolipoprotein E: upregulation of ATP-binding cassette transporter A1 expression. PLoS One 6, e21453.10.1371/journal.pone.0021453Suche in Google Scholar PubMed PubMed Central

Zhuo, W., Zhang, L., Zhu, Y., Xie, Q., Zhu, B., and Chen, Z. (2015). Valproic acid, an inhibitor of class I histone deacetylases, reverses acquired Erlotinib-resistance of lung adenocarcinoma cells: a connectivity mapping analysis and an experimental study. Am. J. Cancer Res. 5, 2202–2211.Suche in Google Scholar

Zimmermann, S., Kiefer, F., Prudenziati, M., Spiller, C., Hansen, J., Floss, T., Wurst, W., Minucci, S., and Göttlicher, M. (2007). Reduced body size and decreased intestinal tumor rates in HDAC2-mutant mice. Cancer Res. 67, 9047–9054.10.1158/0008-5472.CAN-07-0312Suche in Google Scholar PubMed

Received: 2016-10-12
Accepted: 2016-12-13
Published Online: 2016-12-20
Published in Print: 2017-6-27

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 9.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2016-0307/html
Button zum nach oben scrollen