Startseite Analysis of anticoagulants for blood-based quantitation of amyloid β oligomers in the sFIDA assay
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Analysis of anticoagulants for blood-based quantitation of amyloid β oligomers in the sFIDA assay

  • Kateryna Kravchenko , Andreas Kulawik , Maren Hülsemann , Katja Kühbach , Christian Zafiu , Yvonne Herrmann , Christina Linnartz , Luriano Peters , Tuyen Bujnicki , Johannes Willbold , Oliver Bannach und Dieter Willbold EMAIL logo
Veröffentlicht/Copyright: 2. November 2016

Abstract

Early diagnostics at the preclinical stage of Alzheimer’s disease is of utmost importance for drug development in clinical trials and prognostic guidance. Since soluble Aβ oligomers are considered to play a crucial role in the disease pathogenesis, several methods aim to quantify Aβ oligomers in body fluids such as cerebrospinal fluid (CSF) and blood plasma. The highly specific and sensitive method surface-based fluorescence intensity distribution analysis (sFIDA) has successfully been established for oligomer quantitation in CSF samples. In our study, we explored the sFIDA method for quantitative measurements of synthetic Aβ particles in blood plasma. For this purpose, EDTA-, citrate- and heparin-treated blood plasma samples from five individual donors were spiked with Aβ coated silica nanoparticles (Aβ-SiNaPs) and were applied to the sFIDA assay. Based on the assay parameters linearity, coefficient of variation and limit of detection, we found that EDTA plasma yields the most suitable parameter values for quantitation of Aβ oligomers in sFIDA assay with a limit of detection of 16 fM.

Acknowledgments

This work was supported by the Federal Ministry of Education and Research within the projects ‘Validierung des Innovationspotenzials wissenschaftlicher Forschung – VIP’ (03V0641), ‘Kompetenznetz Degenerative Demenzen’ (01GI1010A), and the JPND ‘Neurodegenerative Disease Research/Biomarkers for Alzheimer’s and Parkinson’s disease’ (01ED1203H), as well as the Michael J. Fox Foundation for Parkinson’s Research (11084).

References

Andreasson, U., Perret-Liaudet, A., van Waalwijk van Doorn, L.J., Blennow, K., Chiasserini, D., Engelborghs, S., Fladby, T., Genc, S., Kruse, N., Kuiperij, H.B., et al. (2015). A practical guide to immunoassay method validation. Front. Neurol. 6, 179.10.3389/fneur.2015.00179Suche in Google Scholar

Banks, R.E., Stanley, A.J., Cairns, D.A., Barrett, J.H., Clarke, P., Thompson, D., and Selby, P.J. (2005). Influences of blood sample processing on low-molecular-weight proteome identified by surface-enhanced laser desorption/ionization mass spectrometry. Clin. Chem. 51, 1637–1649.10.1373/clinchem.2005.051417Suche in Google Scholar

Bannach, O., Birkmann, E., Reinartz, E., Jaeger, K.E., Langeveld, J.P., Rohwer, R.G., Gregori, L., Terry, L.A., Willbold, D., Riesner, D. (2012). Detection of prion protein particles in blood plasma of scrapie infected sheep. PLoS One 7, e36620.10.1371/journal.pone.0036620Suche in Google Scholar

Biere, A.L., Ostaszewski, B., Stimson, E.R., Hyman, B.T., Maggio, J.E., and Selkoe, D.J. (1996). Amyloid beta-peptide is transported on lipoproteins and albumin in human plasma. J. Biol. Chem. 271, 32916–32922.10.1074/jbc.271.51.32916Suche in Google Scholar

Birkmann, E., Henke, F., Weinmann, N., Dumpitak, C., Groschup, M., Funke, A., Willbold, D., and Riesner, D. (2007). Counting of single prion particles bound to a capture-antibody surface (surface-FIDA). Vet. Microbiol. 123, 294–304.10.1016/j.vetmic.2007.04.001Suche in Google Scholar

Birkmann, E., Schafer, O., Weinmann, N., Dumpitak, C., Beekes, M., Jackman, R., Thorne, L., and Riesner, D. (2006). Detection of prion particles in samples of BSE and scrapie by fluorescence correlation spectroscopy without proteinase K digestion. Biol. Chem. 387, 95–102.10.1515/BC.2006.013Suche in Google Scholar

Blennow, K. (2004). CSF biomarkers for mild cognitive impairment. J. Intern. Med. 256, 224–234.10.1111/j.1365-2796.2004.01368.xSuche in Google Scholar

Blennow, K., Mattsson, N., Scholl, M., Hansson, O., and Zetterberg, H. (2015). Amyloid biomarkers in Alzheimer’s disease. Trends Pharmacol. Sci. 36, 297–309.10.1016/j.tips.2015.03.002Suche in Google Scholar

Bruggemann, L., Quapp, W., and Wennrich, R. (2006). Test for non-linearity concerning linear calibrated chemical measurements. Accredit. Qual. Assur. 11, 625–631.10.1007/s00769-006-0205-xSuche in Google Scholar

Capila, I. and R. Linhardt, J. (2002). Heparin-protein interactions. Angew. Chem. Int. Ed. Engl. 41, 391–412.10.1002/1521-3773(20020201)41:3<390::AID-ANIE390>3.0.CO;2-BSuche in Google Scholar

Chuang, C. K., Lin, S.P., Y. Lin, T., and Huang, F.Y. (1998). Effects of anticoagulants in amino acid analysis: comparisons of heparin, EDTA, and sodium citrate in vacutainer tubes for plasma preparation. Clin. Chem. 44, 1052–1056.10.1093/clinchem/44.5.1052Suche in Google Scholar

Davie, E. W. and O. Ratnoff, D. (1964). Waterfall sequence for intrinsic blood clotting. Science 145, 1310–1312.10.1126/science.145.3638.1310Suche in Google Scholar

Eid, M., Gollwitzer, M., and Schmitt, M. (2013). Statistik und Forschungsmethoden Lehrbuch; mit Online-Materialien. Weinheim, Wiley-VCH.Suche in Google Scholar

Fendl, B., Weiss, R., Fischer, M.B., Spittler, A., and Weber, V. (2016). Characterization of extracellular vesicles in whole blood: Influence of pre-analytical parameters and visualization of vesicle-cell interactions using imaging flow cytometry. Biochem. Biophys. Res. Commun. 478, 168–173.10.1016/j.bbrc.2016.07.073Suche in Google Scholar

Funk, W., Dammann, V., and Donnevert, G. (2005). Qualitätssicherung in der Analytischen Chemie Anwendungen in der Umwelt-, Lebensmittel- und Werkstoffanalytik, Biotechnologie und Medizintechnik; Weinheim, Wiley-VCH.10.1002/9783527624508Suche in Google Scholar

Funke, S.A., Birkmann, E., Henke, F., Gortz, P., Lange-Asschenfeldt, C., Riesner, D., and Willbold, D. (2007). Single particle detection of Aβ aggregates associated with Alzheimer’s disease. Biochem. Biophys. Res. Commun. 364, 902–907.10.1016/j.bbrc.2007.10.085Suche in Google Scholar

Funke, S.A., Wang, L., Birkmann, E., and Willbold, D. (2010). Single-particle detection system for Aβ aggregates: adaptation of surface-fluorescence intensity distribution analysis to laser scanning microscopy. Rejuvenation Res. 13, 206–209.10.1089/rej.2009.0925Suche in Google Scholar

Gerlach, R. F., Uzuelli, J.A., Souza-Tarla, C.D., and Tanus-Santos, J.E. (2005). Effect of anticoagulants on the determination of plasma matrix metalloproteinase (MMP)-2 and MMP-9 activities. Anal. Biochem. 344, 147–149.10.1016/j.ab.2005.04.038Suche in Google Scholar

Haass, C. and D. Selkoe, J. (2007). Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat. Rev. Mol. Cell Biol. 8, 101–112.10.1038/nrm2101Suche in Google Scholar

Hsieh, S.Y., Chen, R.K., Pan, Y.H., and Lee, H.L. (2006). Systematical evaluation of the effects of sample collection procedures on low-molecular-weight serum/plasma proteome profiling. Proteomics 6, 3189–3198.10.1002/pmic.200500535Suche in Google Scholar

Hubbard, R.W., Chambers, J.G., Sanchez, A., Slocum, R., and Lee, P. (1988). Amino acid analysis of plasma: studies in sample preparation. J. Chromatogr. 431, 163–169.10.1016/S0378-4347(00)83080-7Suche in Google Scholar

Hülsemann, M., Zafiu, C., Kühbach, K., Luhmann, N., Herrmann, Y., Peters, L., Linnartz, C., Willbold, J., Kravchenko, K., Kulawik, A., et al. (2016). Biofunctionalized silica nanoparticles: standards in amyloid-β oligomer-based diagnosis of Alzheimer’s disease. J Alzheimers Dis. 54, 79–98.10.3233/JAD-160253Suche in Google Scholar

Jambunathan, K. and A. Galande, K. (2014). Sample collection in clinical proteomics–proteolytic activity profile of serum and plasma. Proteomics Clin. Appl. 8, 299–307.10.1002/prca.201300037Suche in Google Scholar

Koudinov, A., Matsubara, E., Frangione, B., and Ghiso, J. (1994). The soluble form of Alzheimer’s amyloid β protein is complexed to high density lipoprotein 3 and very high density lipoprotein in normal human plasma. Biochem. Biophys. Res. Commun. 205, 1164–1171.10.1006/bbrc.1994.2788Suche in Google Scholar

Koudinov, A. R., Berezov, T.T., Kumar, A., and N. Koudinova, V. (1998). Alzheimer’s amyloid β interaction with normal human plasma high density lipoprotein: association with apolipoprotein and lipids. Clin. Chim. Acta 270, 75–84.10.1016/S0009-8981(97)00207-6Suche in Google Scholar

Kühbach, K., Hülsemann, M., Herrmann, Y., Kravchenko, K., Kulawik, A., Linnartz, C., Peters, L., Wang, K., Willbold, J., Willbold, D., et al. (2016). Application of an amyloid β oligomer standard in the sFIDA assay. Front. Neurosci. 10, 8.10.3389/fnins.2016.00008Suche in Google Scholar PubMed PubMed Central

Lachno, D.R., Vanderstichele, H., De Groote, G., Kostanjevecki, V., De Meyer, G., Siemers, E.R., Willey, M.B., Bourdage, J.S., Konrad, R.J., Dean, R.A. (2009). The influence of matrix type, diurnal rhythm and sample collection and processing on the measurement of plasma β-amyloid isoforms using the INNO-BIA plasma Aβ forms multiplex assay. J. Nutr. Health. Aging 13, 220–225.10.1007/s12603-009-0062-5Suche in Google Scholar PubMed

Leidinger, P., Backes, C., Rheinheimer, S., Keller, A., and Meese, E. (2015). Towards clinical applications of blood-borne miRNA signatures: the influence of the anticoagulant EDTA on miRNA abundance. PLoS One 10, e0143321.10.1371/journal.pone.0143321Suche in Google Scholar PubMed PubMed Central

Madine, J., Pandya, M.J., Hicks, M.R., Rodger, A., Yates, E.A., S. Radford, E., and D. Middleton, A. (2012). Site-specific identification of an Aβ fibril-heparin interaction site by using solid-state NMR spectroscopy. Angew. Chem. Int. Ed. Engl. 51, 13140–13143.10.1002/anie.201204459Suche in Google Scholar PubMed PubMed Central

Mandel, J. (1964). The statistical analysis of experimental data. New York [u.a.], Wiley Interscience.Suche in Google Scholar

Massart, D.L. (1997). Handbook of chemometrics and qualimetrics Elektronische Ressource. Amsterdam, New York, Elsevier.Suche in Google Scholar

Nguyen, K. and D. Rabenstein, L. (2016). Interaction of the heparin-binding consensus sequence of β-amyloid peptides with heparin and heparin-derived oligosaccharides. J. Phys. Chem. B 120, 2187–2197.10.1021/acs.jpcb.5b12235Suche in Google Scholar PubMed

Olkin, I. and J. Pratt, W. (1958). Unbiased Estimation of Certain Correlation Coefficients. Ann. Math. Statist. 29, 201–211.10.1214/aoms/1177706717Suche in Google Scholar

Olson, S.T. and Chuang, Y.J. (2002). Heparin activates antithrombin anticoagulant function by generating new interaction sites (exosites) for blood clotting proteinases. Trends Cardiovasc. Med. 12, 331–338.10.1016/S1050-1738(02)00183-4Suche in Google Scholar

Parvy, P.R., J. Bardet, I., and Kamoun, P.P. (1983). EDTA in vacutainer tubes can interfere with plasma amino acid analysis. Clin. Chem. 29, 735.10.1093/clinchem/29.4.735Suche in Google Scholar

Ribeiro, A., Ritter, T., Griffin, M., and Ceredig, R. (2016). Development of a flow cytometry-based potency assay for measuring the in vitro immunomodulatory properties of mesenchymal stromal cells. Immunol. Lett. 177: 38–46.10.1016/j.imlet.2016.07.010Suche in Google Scholar

Riches, P., Gooding, R., Millar, B.C., and Rowbottom, A.W. (1992). Influence of collection and separation of blood samples on plasma IL-1, IL-6 and TNF-α concentrations. J. Immunol. Methods 153, 125–131.10.1016/0022-1759(92)90314-JSuche in Google Scholar

Safar, J. G., Wille, H., Geschwind, M.D., Deering, C., Latawiec, D., Serban, A., King, D.J., Legname, G., Weisgraber, K.H., Mahley, R.W., et al. (2006). Human prions and plasma lipoproteins. Proc. Natl. Acad Sci. USA 103, 11312–11317.10.1073/pnas.0604021103Suche in Google Scholar

Sanagi, M.M., Nasir, Z., Ling, S.L., Hermawan, D., Ibrahim, W.A., and Naim, A.A. (2010). A practical approach for linearity assessment of calibration curves under the International Union of Pure and Applied Chemistry (IUPAC) guidelines for an in-house validation of method of analysis. J. AOAC Int. 93, 1322–1330.10.1093/jaoac/93.4.1322Suche in Google Scholar

Selkoe, D.J. (1991). The molecular pathology of Alzheimer’s disease. Neuron 6, 487–498.10.1016/0896-6273(91)90052-2Suche in Google Scholar

Van Loco, J., Elskens, M., Croux, C., and Beernaert, H. (2002). Linearity of calibration curves: use and misuse of the correlation coefficient. Accredit. Qual. Assur. 7, 281–285.10.1007/s00769-002-0487-6Suche in Google Scholar

Vanderstichele, H., Van Kerschaver, E., Hesse, C., Davidsson, P., Buyse, M.A., Andreasen, N., Minthon, L., Wallin, A., Blennow, K., Vanmechelen, E. (2000). Standardization of measurement of β-amyloid(1-42) in cerebrospinal fluid and plasma. Amyloid 7, 245–258.10.3109/13506120009146438Suche in Google Scholar PubMed

Wang-Dietrich, L., Funke, S.A., Kuhbach, K., Wang, K., Besmehn, A., Willbold, S., Cinar, Y., Bannach, O., Birkmann, E, Willbold, D. (2013). The amyloid-β oligomer count in cerebrospinal fluid is a biomarker for Alzheimer’s disease. J. Alzheimers Dis. 34, 985–994.10.3233/JAD-122047Suche in Google Scholar PubMed

Watson, D. J., A. Lander, D., and D. Selkoe, J. (1997). Heparin-binding properties of the amyloidogenic peptides Aβ and amylin. Dependence on aggregation state and inhibition by Congo red. J. Biol. Chem. 272, 31617–31624.10.1074/jbc.272.50.31617Suche in Google Scholar PubMed

Wimo, A., Jonsson, L., Bond, J., Prince, M., Winblad, B., and Alzheimer Disease International. (2013). The worldwide economic impact of dementia 2010. Alzheimer’s Dement. 9, 1–11.e13.10.1016/j.jalz.2012.11.006Suche in Google Scholar PubMed

Received: 2016-3-18
Accepted: 2016-9-28
Published Online: 2016-11-2
Published in Print: 2017-4-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 13.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2016-0153/html
Button zum nach oben scrollen