Startseite Increased secretory sphingomyelinase activity in the first trimester of pregnancy in women later developing preeclampsia: a nested case-control study
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Increased secretory sphingomyelinase activity in the first trimester of pregnancy in women later developing preeclampsia: a nested case-control study

  • Víctor Rodríguez-Sureda ORCID logo EMAIL logo , Francesca Crovetto , Stefania Triunfo , Olga Sánchez , Fátima Crispi , Elisa Llurba , Eduard Gratacós , Francesc Figueras und Carmen Domínguez
Veröffentlicht/Copyright: 12. Januar 2016

Abstract

The pathogenic basis of abnormal placentation and dysfunction in preeclampsia (PE) is highly complex and incompletely understood. Secretory sphyngomyelinase activity (S-ASM) was analyzed in plasma samples from 158 pregnant women developing PE and 112 healthy pregnant controls. Serum PlGF, sFlt-1, s-Endoglin and sVCAM were measured. Results showed S-ASM activity to be higher in women who later developed PE than in those with uncomplicated pregnancies (40.6% and 28.8% higher in the late- and early-onset groups, respectively). Plasma S-ASM activity correlated significantly with circulating markers of endothelial damage in the late-PE group (endoglin and sVCAM-1), with plasma cholesterol and total lipid levels. However, these significant associations were not observed in the early-PE or control groups. This work provides the first evidence of significantly elevated circulating S-ASM activity in the first trimester of pregnancy in women who go on to develop PE; thus, it may be deduced that the circulating form of ASM is biologically active in PE and could contribute to promoting endothelial dysfunction and cardiovascular programming. Plasma S-ASM measurement may have clinical relevance as a further potential biomarker contributing to the earliest identification of women at risk of developing preeclampsia.


Corresponding author: Víctor Rodríguez-Sureda, Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, E-08035 Barcelona, Spain; and Biochemistry and Molecular Biology Research Centre for Nanomedicine, Hospital Universitari Vall d’Hebron, Pg. de la Vall d’Hebron, 119-129, E-08035 Barcelona, Spain, e-mail: .

Acknowledgments

Dr. Rodríguez-Sureda is supported by the Centre for Biomedical Network Research on Rare Diseases (CIBERER) from Instituto de Salud Carlos III. The study was supported in part by grants from Fondo de Investigaciones Sanitarias (FIS PI12/00851 and FIS PI13/01449). The samples used in this Project were provided by the Hospital Clínic-IDIBAPS Biobank and Biobanc HUVH with an appropiate ethical approval. We are grateful to Miss C. O’Hara for her help in editing the English language in the original manuscript.

References

Allen, R. E., Rogozinska, E., Cleverly, K., Aquilina, J., and Thangaratinam, S. (2014). Abnormal blood biomarkers in early pregnancy are associated with preeclampsia: a meta-analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 182, 194–201.10.1016/j.ejogrb.2014.09.027Suche in Google Scholar PubMed

Brown, M.A., Lindheimer, M.D., de Swiet, M., Van Assche, A., and Moutquin, J.M. (2001). The classification and diagnosis of the hypertensive disorders of pregnancy: Statement from the international society for the study of hypertension in pregnancy (iSSHP). Hypertens. Pregnancy 20, IX–XIV.Suche in Google Scholar

Chalas, J., Audibert, F., Francoual, J., Le Bihan, B., Frydman, R., and Lindenbaum, A. (2002). Concentrations of apolipoproteins E, C2, and C3 and lipid profile in preeclampsia. Hypertens. Pregnancy 21, 199–204.10.1081/PRG-120015846Suche in Google Scholar PubMed

Claus, R.A., Bunck, A.C., Bockmeyer, C.L., Brunkhorst, F.M., Lösche, W., Kinscherf, R., and Deigner, H.-P. (2005). Role of increased sphingomyelinase activity in apoptosis and organ failure of patients with severe sepsis. FASEB J. 19, 1719–1721.10.1096/fj.04-2842fjeSuche in Google Scholar PubMed

Clausen, T., Djurovic, S., and Henriksen, T. (2001). Dyslipidemia in early second trimester is mainly a feature of women with early onset pre-eclampsia. Br. J. Obstet. Gynaecol. 108, 1081–1087.Suche in Google Scholar

Crispi, F., Domínguez, C., Llurba, E., Martín-Gallán, P., Cabero, L., and Gratacós, E. (2006). Placental angiogenic growth factors and uterine artery doppler findings for characterization of different subsets in preeclampsia and in isolated intrauterine growth restriction. Am. J. Obstet. Gynecol. 195, 201–207.10.1016/j.ajog.2006.01.014Suche in Google Scholar PubMed

Crispi, F., Llurba, E., Domínguez, C., Martín-Gallán, P., Cabero, L., and Gratacós, E. (2008). Predictive value of angiogenic factors and uterine artery doppler for early- versus late-onset pre-eclampsia and intrauterine growth restriction. Ultrasound Obstet. Gynecol. 31, 303–309.10.1002/uog.5184Suche in Google Scholar PubMed

Crovetto, F., Figueras, F., Triunfo, S., Crispi, F., Rodríguez-Sureda, V., Peguero, A., Domínguez, C., and Gratacós, E. (2014). Added value of angiogenic factors for the prediction of early and late preeclampsia in the first trimester of pregnancy. Fetal Diagn. Ther. 35, 258–266.10.1159/000358302Suche in Google Scholar PubMed

Crovetto, F., Figueras, F., Triunfo, S., Crispi, F., Rodriguez-Sureda, V., Dominguez, C., Llurba, E., and Gratacós, E. (2015). First trimester screening for early and late preeclampsia based on maternal characteristics, biophysical parameters, and angiogenic factors. Prenat. Diagn. 35, 183–191.10.1002/pd.4519Suche in Google Scholar PubMed

Diggelen, O.P. van, Voznyi, Y.V., Keulemans, J.L.M., Schoonderwoerd, K., Ledvinova, J., Mengel, E., Zschiesche, M., Santer, R., and Harzer, K. (2005). A new fluorimetric enzyme assay for the diagnosis of Niemann-Pick A/B, with specificity of natural sphingomyelinase substrate. J. Inherit. Metab. Dis. 28, 733–741.10.1007/s10545-005-0105-ySuche in Google Scholar PubMed

Doehner, W., Bunck, A.C., Rauchhaus, M., von Haehling, S., Brunkhorst, F.M., Cicoira, M., Tschope, C., Ponikowski, P., Claus, R.A., and Anker, S.D. (2007). Secretory sphingomyelinase is upregulated in chronic heart failure: a second messenger system of immune activation relates to body composition, muscular functional capacity, and peripheral blood flow. Eur. Heart J. 28, 821–828.10.1093/eurheartj/ehl541Suche in Google Scholar PubMed

Eiland, E., Nzerue, C., and Faulkner, M. (2012). Preeclampsia 2012. J. Pregnancy 2012, 586578.10.1155/2012/586578Suche in Google Scholar PubMed PubMed Central

Emet, T., Işik, Ü., Güven, S.G., Balik, G., Ural, Ü.M., Tekin, Y.B., Šentürk, Š., Šahin, F.K., and Avşar, A.F. (2013). Plasma lipids and lipoproteins during pregnancy and related pregnancy outcomes. Arch. Gynecol. Obstet. 288, 49–55.10.1007/s00404-013-2750-ySuche in Google Scholar PubMed

Enquobahrie, D.A., Williams, M.A., Butler, C.L., Frederick, I.O., Miller, R.S., and Luthy, D.A. (2004). Maternal plasma lipid concentrations in early pregnancy and risk of preeclampsia. Am. J. Hypertens. 17, 574–581.10.1016/j.amjhyper.2004.03.666Suche in Google Scholar PubMed

Farzadnia, M., Ayatollahi, H., Hasan-Zade, M., and Rahimi, H.R. (2013). A comparative study of vascular cell adhesion molecule-1 and high-sensitive C-reactive protein in normal and preeclamptic pregnancies. Interv. Med. Appl. Sci. 5, 26–30.10.1556/imas.5.2013.1.5Suche in Google Scholar

García-Ruiz, C., Marí, M., Morales, A., Colell, A., Ardite, E., and Fernández-Checa, J.C. (2000). Human placenta sphingomyelinase, an exogenous acidic pH-optimum sphingomyelinase, induces oxidative stress, glutathione depletion, and apoptosis in rat hepatocytes. Hepatology 32, 56–65.10.1053/jhep.2000.8267Suche in Google Scholar PubMed

Germain, S.J., Sacks, G.P., Sooranna, S.R., Soorana, S.R., Sargent, I.L., and Redman, C.W. (2007). Systemic inflammatory priming in normal pregnancy and preeclampsia: the role of circulating syncytiotrophoblast microparticles. J. Immunol. 178, 5949–5956.10.4049/jimmunol.178.9.5949Suche in Google Scholar PubMed

Ghulmiyyah, L. and Sibai, B. (2012). Maternal mortality from preeclampsia/eclampsia. Semin. Perinatol. 36, 56–59.10.1053/j.semperi.2011.09.011Suche in Google Scholar PubMed

Grammatikos, G., Mühle, C., Ferreiros, N., Schroeter, S., Bogdanou, D., Schwalm, S., Hintereder, G., Kornhuber, J., Zeuzem, S., Sarrazin, C., et al. (2014). Serum acid sphingomyelinase is upregulated in chronic hepatitis C infection and non alcoholic fatty liver disease. Biochim. Biophys. Acta 1841, 1012–1020.10.1016/j.bbalip.2014.04.007Suche in Google Scholar PubMed

Gulbins, E. and Kolesnick, R. (2002). Acid sphingomyelinase-derived ceramide signaling in apoptosis. Subcell. Biochem. 36, 229–244.10.1007/0-306-47931-1_12Suche in Google Scholar PubMed

Hannun, Y.A. and Obeid, L.M. (2008). Principles of bioactive lipid signalling: Lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 9, 139–150.10.1038/nrm2329Suche in Google Scholar PubMed

Hou, Q., Jin, J., Zhou, H., Novgorodov, S.A., Bielawska, A., Szulc, Z.M., Hannun, Y.A., Obeid, L.M., and Hsu, Y.-T. (2011). Mitochondrially targeted ceramides preferentially promote autophagy, retard cell growth, and induce apoptosis. J. Lipid Res. 52, 278–288.10.1194/jlr.M012161Suche in Google Scholar PubMed PubMed Central

Hund, M., Verhagen-Kamerbeek, W., Reim, M., Messinger, D., van der Does, R., and Stepan, H. (2015). Influence of the sFlt-1/PlGF ratio on clinical decision-making in women with suspected preeclampsia – the preOS study protocol. Hypertens. Pregnancy 34, 102–115.10.3109/10641955.2014.982331Suche in Google Scholar

Hurwitz, R., Ferlinz, K., Vielhaber, G., Moczall, H., and Sandhoff, K. (1994). Processing of human acid sphingomyelinase in normal and I-cell fibroblasts. J. Biol. Chem. 269, 5440–5445.10.1016/S0021-9258(17)37705-0Suche in Google Scholar

Jenkins, R.W., Canals, D., and Hannun, Y.A. (2009). Roles and regulation of secretory and lysosomal acid sphingomyelinase. Cell Signal. 21, 836–846.10.1016/j.cellsig.2009.01.026Suche in Google Scholar

Jenkins, R.W., Clarke, C.J., Lucas, J.T., Jr, Shabbir, M., Wu, B.X., Simbari, F., Mueller, J., Hannun, Y.A., Lazarchick, J., and Shirai, K. (2013). Evaluation of the role of secretory sphingomyelinase and bioactive sphingolipids as biomarkers in hemophagocytic lymphohistiocytosis. Am. J. Hematol. 88, E265–E272.10.1002/ajh.23535Suche in Google Scholar

Kendall, R.L. and Thomas, K.A. (1993). Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc. Natl. Acad. Sci. USA 90, 10705–10709.10.1073/pnas.90.22.10705Suche in Google Scholar

Kleinrouweler, C.E., Wiegerinck, M.M.J., Ris-Stalpers, C., Bossuyt, P.M.M., van der Post, J.A.M., von Dadelszen, P., Mol, B.W.J., and Pajkrt, E. (2012). Accuracy of circulating placental growth factor, vascular endothelial growth factor, soluble fms-like tyrosine kinase 1 and soluble endoglin in the prediction of pre-eclampsia: a systematic review and meta-analysis. BJOG 119, 778–787.10.1111/j.1471-0528.2012.03311.xSuche in Google Scholar

Koçyigit, Y., Atamer, Y., Atamer, A., Tuzcu, A., and Akkus, Z. (2004). Changes in serum levels of leptin, cytokines and lipoprotein in pre-eclamptic and normotensive pregnant women. Gynecol. Endocrinol. 19, 267–273.10.1080/09513590400018108Suche in Google Scholar

Kornhuber, J., Rhein, C., Müller, C.P., and Mühle, C. (2015). Secretory sphingomyelinase in health and disease. Biol. Chem. 396, 707–736.10.1515/hsz-2015-0109Suche in Google Scholar

Kott, M., Elke, G., Reinicke, M., Winoto-Morbach, S., Schädler, D., Zick, G., Frerichs, I., Weiler, N., and Schütze, S. (2014). Acid sphingomyelinase serum activity predicts mortality in intensive care unit patients after systemic inflammation: a prospective cohort study. PLoS One 9, e112323.10.1371/journal.pone.0112323Suche in Google Scholar

Krauss, T., Azab, H., Dietrich, M., and Augustin, H.G. (1998). Fetal plasma levels of circulating endothelial cell adhesion molecules in normal and preeclamptic pregnancies. Eur. J. Obstet. Gynecol. Reprod. Biol. 78, 41–45.10.1016/S0301-2115(98)00010-4Suche in Google Scholar

Kuc, S., Wortelboer, E.J., van Rijn, B.B., Franx, A., Visser, G.H.A., and Schielen, P.C.J.I. (2011). Evaluation of 7 serum biomarkers and uterine artery doppler ultrasound for first-trimester prediction of preeclampsia: a systematic review. Obstet. Gynecol. Surv. 66, 225–239.10.1097/OGX.0b013e3182227027Suche in Google Scholar PubMed

Lang, P.A., Schenck, M., Nicolay, J.P., Becker, J.U., Kempe, D.S., Lupescu, A., Koka, S., Eisele, K., Klarl, B.A., Rübben, H., et al. (2007). Liver cell death and anemia in Wilson disease involve acid sphingomyelinase and ceramide. Nat. Med. 13, 164–170.10.1038/nm1539Suche in Google Scholar PubMed

Lansmann, S., Schuette, C.G., Bartelsen, O., Hoernschemeyer, J., Linke, T., Weisgerber, J., and Sandhoff, K. (2003). Human acid sphingomyelinase. Eur. J. Biochem. 270, 1076–1088.10.1046/j.1432-1033.2003.03435.xSuche in Google Scholar PubMed

Levine, R.J., Lam, C., Qian, C., Yu, K.F., Maynard, S.E., Sachs, B.P., Sibai, B.M., Epstein, F.H., Romero, R., Thadhani, R., et al. (2006). Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N. Engl. J. Med. 355, 992–1005.10.1056/NEJMoa055352Suche in Google Scholar PubMed

Li, P.-L. and Zhang, Y. (2013). Cross talk between ceramide and redox signaling: Implications for endothelial dysfunction and renal disease. Handb. Exp. Pharmacol. 216, 171–197.10.1007/978-3-7091-1511-4_9Suche in Google Scholar PubMed PubMed Central

Llurba, E., Gratacós, E., Martín-Gallán, P., Cabero, L., and Domínguez, C. (2004). A comprehensive study of oxidative stress and antioxidant status in preeclampsia and normal pregnancy. Free Radic. Biol. Med. 37, 557–570.10.1016/j.freeradbiomed.2004.04.035Suche in Google Scholar PubMed

Marathe, S., Schissel, S.L., Yellin, M.J., Beatini, N., Mintzer, R., Williams, K.J., and Tabas, I. (1998). Human vascular endothelial cells are a rich and regulatable source of secretory sphingomyelinase. implications for early atherogenesis and ceramide-mediated cell signaling. J. Biol. Chem. 273, 4081–4088.10.1074/jbc.273.7.4081Suche in Google Scholar PubMed

Matthiesen, L., Berg, G., Ernerudh, J., Ekerfelt, C., Jonsson, Y., and Sharma, S. (2005). Immunology of preeclampsia. Chem. Immunol. Allergy 89, 49–61.10.1159/000087912Suche in Google Scholar PubMed

Maynard, S.E., Min, J.-Y., Merchan, J., Lim, K.-H., Li, J., Mondal, S., Libermann, T.A., Morgan, J.P., Sellke, F.W., Stillman, I.E., et al. (2003). Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J. Clin. Invest. 111, 649–658.10.1172/JCI17189Suche in Google Scholar PubMed PubMed Central

Melland-Smith, M., Ermini, L., Chauvin, S., Craig-Barnes, H., Tagliaferro, A., Todros, T., Post, M., and Caniggia, I. (2015). Disruption of sphingolipid metabolism augments ceramide-induced autophagy in preeclampsia. Autophagy 11, 653–669.10.1080/15548627.2015.1034414Suche in Google Scholar PubMed PubMed Central

Molvarec, A., Szarka, A., Walentin, S., Beko, G., Karádi, I., Prohászka, Z., and Rigó, J., Jr (2011). Serum leptin levels in relation to circulating cytokines, chemokines, adhesion molecules and angiogenic factors in normal pregnancy and preeclampsia. Reprod. Biol. Endocrinol. 9, 124.10.1186/1477-7827-9-124Suche in Google Scholar

Mutter, W.P. and Karumanchi, S.A. (2008). Molecular mechanisms of preeclampsia. Microvasc. Res. 75, 1–8.10.1016/j.mvr.2007.04.009Suche in Google Scholar

Mühle, C., Huttner, H.B., Walter, S., Reichel, M., Canneva, F., Lewczuk, P., Gulbins, E., and Kornhuber, J. (2013). Characterization of acid sphingomyelinase activity in human cerebrospinal fluid. PLoS One 8, e62912.10.1371/journal.pone.0062912Suche in Google Scholar

Opreanu, M., Lydic, T.A., Reid, G.E., McSorley, K.M., Esselman, W.J., and Busik, J.V. (2010). Inhibition of cytokine signaling in human retinal endothelial cells through downregulation of sphingomyelinases by docosahexaenoic acid. Invest. Ophthalmol. Vis. Sci. 51, 3253–3263.10.1167/iovs.09-4731Suche in Google Scholar

Pacurari, M., Kafoury, R., Tchounwou, P.B., and Ndebele, K. (2014). The renin-angiotensin-aldosterone system in vascular inflammation and remodeling. Int. J. Inflam. 2014, article ID 689360.10.1155/2014/689360Suche in Google Scholar

Patschan, S., Chen, J., Polotskaia, A., Mendelev, N., Cheng, J., Patschan, D., and Goligorsky, M.S. (2008). Lipid mediators of autophagy in stress-induced premature senescence of endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 294, H1119–H1129.10.1152/ajpheart.00713.2007Suche in Google Scholar

R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.Suche in Google Scholar

Redman, C.W.G. and Sargent, I.L. (2010). Immunology of pre-eclampsia. Am. J. Reprod. Immunol. 63, 534–543.10.1111/j.1600-0897.2010.00831.xSuche in Google Scholar

Redman, C.W., Sacks, G.P., and Sargent, I.L. (1999). Preeclampsia: An excessive maternal inflammatory response to pregnancy. Am. J. Obstet. Gynecol. 180, 499–506.10.1016/S0002-9378(99)70239-5Suche in Google Scholar

Reichel, M., Beck, J., Mühle, C., Rotter, A., Bleich, S., Gulbins, E., and Kornhuber, J. (2011). Activity of secretory sphingomyelinase is increased in plasma of alcohol-dependent patients. Alcohol Clin. Exp. Res. 35, 1852–1859.10.1111/j.1530-0277.2011.01529.xSuche in Google Scholar PubMed

Robinson, C.J. and Johnson, D.D. (2007). Soluble endoglin as a second-trimester marker for preeclampsia. Am. J. Obstet. Gynecol. 197, e1–e5.10.1016/j.ajog.2007.03.058Suche in Google Scholar PubMed

Schissel, S.L., Keesler, G.A., Schuchman, E.H., Williams, K.J., and Tabas, I. (1998). The cellular trafficking and zinc dependence of secretory and lysosomal sphingomyelinase, two products of the acid sphingomyelinase gene. J. Biol. Chem. 273, 18250–18259.10.1074/jbc.273.29.18250Suche in Google Scholar

Sibai, B., Dekker, G. and Kupferminc, M. (2005). Pre-eclampsia. Lancet. 365, 785–799.10.1016/S0140-6736(05)17987-2Suche in Google Scholar

Siddiqui, I. (2014). Maternal serum lipids in women with pre-eclampsia. Ann. Med. Health Sci. Res. 4, 638–641.10.4103/2141-9248.139358Suche in Google Scholar

Simons, K. and Ikonen, E. (1997). Functional rafts in cell membranes. Nature 387, 569–572.10.1038/42408Suche in Google Scholar

Singh, A.T., Dharmarajan, A., Aye, I.L.M.H., and Keelan, J.A. (2012). Ceramide biosynthesis and metabolism in trophoblast syncytialization. Mol. Cell. Endocrinol. 362, 48–59.10.1016/j.mce.2012.05.009Suche in Google Scholar

Smith, E.L. and Schuchman, E.H. (2008). The unexpected role of acid sphingomyelinase in cell death and the pathophysiology of common diseases. FASEB J. 22, 3419–3431.10.1096/fj.08-108043Suche in Google Scholar

Spence, M.W., Byers, D.M., Palmer, F.B., and Cook, H.W. (1989). A new Zn2+-stimulated sphingomyelinase in fetal bovine serum. J. Biol. Chem. 264, 5358–5363.10.1016/S0021-9258(18)83553-0Suche in Google Scholar

Spijkers, L.J.A., van den Akker, R.F.P., Janssen, B.J.A., Debets, J.J., De Mey, J.G.R., Stroes, E.S.G., van den Born, B.-J.H., Wijesinghe, D.S., Chalfant, C.E., MacAleese, L., et al. (2011). Hypertension is associated with marked alterations in sphingolipid biology: A potential role for ceramide. PLoS One 6, e21817.10.1371/journal.pone.0021817Suche in Google Scholar

Steegers, E.A.P., von Dadelszen, P., Duvekot, J.J., and Pijnenborg, R. (2010). Pre-eclampsia. Lancet 376, 631–644.10.1016/S0140-6736(10)60279-6Suche in Google Scholar

Stergiotou, I., Crispi, F., Valenzuela-Alcaraz, B., Bijnens, B., and Gratacós, E. (2013). Patterns of maternal vascular remodeling and responsiveness in early- versus late-onset preeclampsia. Am. J. Obstet. Gynecol. 209, 558.e1–e14.10.1016/j.ajog.2013.07.030Suche in Google Scholar PubMed

Uhlén, M., Fagerberg, L., Hallström, B.M., Lindskog, C., Oksvold, P., Mardinoglu, A., Sivertsson, A., Kampf, C., Sjöstedt, E., Asplund, A., et al. (2015). Proteomics. Tissue-based map of the human proteome. Science 347, 1260419.Suche in Google Scholar

Valensise, H., Vasapollo, B., Gagliardi, G., and Novelli, G.P. (2008). Early and late preeclampsia: two different maternal hemodynamic states in the latent phase of the disease. Hypertension 52, 873–880.10.1161/HYPERTENSIONAHA.108.117358Suche in Google Scholar PubMed

Venable, M.E. and Yin, X. (2009). Ceramide induces endothelial cell senescence. Cell. Biochem. Funct. 27, 547–551.10.1002/cbf.1605Suche in Google Scholar PubMed

Warrington, J.P., George, E.M., Palei, A.C., Spradley, F.T., and Granger, J.P. (2013). Recent advances in the understanding of the pathophysiology of preeclampsia. Hypertension 62, 666–673.10.1161/HYPERTENSIONAHA.113.00588Suche in Google Scholar PubMed PubMed Central

Wong, M.L., Xie, B., Beatini, N., Phu, P., Marathe, S., Johns, A., Gold, P.W., Hirsch, E., Williams, K.J., Licinio, J., et al. (2000). Acute systemic inflammation up-regulates secretory sphingomyelinase in vivo: a possible link between inflammatory cytokines and atherogenesis. Proc. Natl. Acad. Sci. USA 97, 8681–8686.10.1073/pnas.150098097Suche in Google Scholar PubMed PubMed Central

Received: 2015-10-15
Accepted: 2015-12-28
Published Online: 2016-1-12
Published in Print: 2016-3-1

©2016 by De Gruyter

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2015-0266/pdf?lang=de
Button zum nach oben scrollen