Startseite Involvement of loop 5 lysine residues and the N-terminal β-hairpin of the ribotoxin hirsutellin A on its insecticidal activity
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Involvement of loop 5 lysine residues and the N-terminal β-hairpin of the ribotoxin hirsutellin A on its insecticidal activity

  • Miriam Olombrada ORCID logo , Lucía García-Ortega , Javier Lacadena , Mercedes Oñaderra , José G. Gavilanes und Álvaro Martínez-del-Pozo EMAIL logo
Veröffentlicht/Copyright: 18. November 2015

Abstract

Ribotoxins are cytotoxic members of the family of fungal extracellular ribonucleases best represented by RNase T1. They share a high degree of sequence identity and a common structural fold, including the geometric arrangement of their active sites. However, ribotoxins are larger, with a well-defined N-terminal β-hairpin, and display longer and positively charged unstructured loops. These structural differences account for their cytotoxic properties. Unexpectedly, the discovery of hirsutellin A (HtA), a ribotoxin produced by the invertebrate pathogen Hirsutella thompsonii, showed how it was possible to accommodate these features into a shorter amino acid sequence. Examination of HtA N-terminal β-hairpin reveals differences in terms of length, charge, and spatial distribution. Consequently, four different HtA mutants were prepared and characterized. One of them was the result of deleting this hairpin [Δ(8-15)] while the other three affected single Lys residues in its close spatial proximity (K115E, K118E, and K123E). The results obtained support the general conclusion that HtA active site would show a high degree of plasticity, being able to accommodate electrostatic and structural changes not suitable for the other previously known larger ribotoxins, as the variants described here only presented small differences in terms of ribonucleolytic activity and cytotoxicity against cultured insect cells.


Corresponding author: Álvaro Martínez-del-Pozo, Facultad de Química, Departamento de Bioquímica y Biología Molecular I, Universidad Complutense, E-28040 Madrid, Spain, e-mail:

Acknowledgments

This work was supported by project BFU2012-32404 from the Spanish Ministerio de Economía y Competitividad. M.O. is recipient of a FPU predoctoral fellowship from the Spanish Ministerio de Educación. L.G.-O. is a postdoctoral researcher of the PICATA program from the Campus de Excelencia Internacional Moncloa.

References

Álvarez-García, E., García-Ortega, L., Verdún, Y., Bruix, M., Martínez-del-Pozo, A., and Gavilanes, J.G. (2006). Tyr-48, a conserved residue in ribotoxins, is involved in the RNA-degrading activity of α-sarcin. Biol. Chem. 387, 535–541.10.1515/BC.2006.069Suche in Google Scholar

Álvarez-García, E., García-Ortega, L., De los Ríos, V., Gavilanes, J.G., and Martínez-del-Pozo, A. (2009a). Influence of key residues on the heterologous extracellular production of fungal ribonuclease U2 in the yeast Pichia pastoris. Protein Expr. Purif. 65, 223–229.10.1016/j.pep.2009.01.012Suche in Google Scholar

Álvarez-García, E., Martínez-del-Pozo, A., and Gavilanes, J.G. (2009b). Role of the basic character of α-sarcin’s NH2-terminal β-hairpin in ribosome recognition and phospholipid interaction. Arch. Biochem. Biophys. 481, 37–44.10.1016/j.abb.2008.10.012Suche in Google Scholar

Arruda, L.K., Platts-Mills, T.A., Fox, J.W., and Chapman, M.D. (1990). Aspergillus fumigatus allergen I, a major IgE-binding protein, is a member of the mitogillin family of cytotoxins. J. Exp. Med. 172, 1529–1532.10.1084/jem.172.5.1529Suche in Google Scholar

Boucias, D.G., Farmerie, W.G., and Pendland, J.C. (1998). Cloning and sequencing of cDNA of the insecticidal toxin hirsutellin A. J. Invertebr. Pathol. 72, 258–261.10.1006/jipa.1998.4762Suche in Google Scholar

Campos-Olivas, R., Bruix, M., Santoro, J., Martínez-del-Pozo, A., Lacadena, J., Gavilanes, J.G., and Rico, M. (1996). Structural basis for the catalytic mechanism and substrate specificity of the ribonuclease α-sarcin. FEBS Lett. 399, 163–165.10.1016/S0014-5793(96)01320-8Suche in Google Scholar

Castaño-Rodríguez, C., Olombrada, M., Partida-Hanon, A., Lacadena, J., Oñaderra, M., Gavilanes, J.G., García-Ortega, L., and Martínez-del-Pozo, A. (2015). Involvement of loops 2 and 3 of α-sarcin on its ribotoxic activity. Toxicon 96, 1–9.10.1016/j.toxicon.2015.01.007Suche in Google Scholar

De la Cruz, J., Karbstein, K., and Woolford, J.L., Jr. (2015). Functions of ribosomal proteins in assembly of eukaryotic ribosomes in vivo. Annu. Rev. Biochem. 84, 93–129.10.1146/annurev-biochem-060614-033917Suche in Google Scholar

DeLano, W.L. (2008). The PyMOL Molecular Graphics System. (San Diego, CA, USA).Suche in Google Scholar

Endo, Y., Chan, Y.-L., Lin, A., Tsurugi, K., and Wool, I. (1988). The cytotoxins α-sarcin and ricin retain their specificity when tested on a synthetic oligoribonucleotide (35-mer) that mimics a region of 28 S ribosomal ribonucleic acid. J. Biol. Chem. 263, 7917–7920.10.1016/S0021-9258(18)68418-2Suche in Google Scholar

Fernández-Luna, J.L., López-Otín, C., Soriano, F., and Méndez, E. (1985). Complete amino acid sequence of the Aspergillus cytotoxin mitogillin. Biochemistry 24, 861–867.10.1021/bi00325a008Suche in Google Scholar PubMed

García-Mayoral, M.F., García-Ortega, L., Lillo, M.P., Santoro, J., Martínez-del-Pozo, A., Gavilanes, J.G., Rico, M., and Bruix, M. (2004). NMR structure of the noncytotoxic α-sarcin mutant Δ(7-22): the importance of the native conformation of peripheral loops for activity. Protein Sci. 13, 1000–1011.10.1110/ps.03532204Suche in Google Scholar PubMed PubMed Central

García-Mayoral, F., García-Ortega, L., Álvarez-García, E., Bruix, M., Gavilanes, J.G., and Martínez-del-Pozo, A. (2005). Modeling the highly specific ribotoxin recognition of ribosomes. FEBS Lett. 579, 6859–6864.10.1016/j.febslet.2005.11.027Suche in Google Scholar PubMed

García-Mayoral, M.F., Martínez-del-Pozo, A., Campos-Olivas, R. Gavilanes, J.G., Santoro, J., Rico, M., Laurents, D.V., and Bruix, M. (2006). pH-Dependent conformational stability of the ribotoxin α-sarcin and four active site charge substitution variants. Biochemistry 45, 13705–13718.10.1021/bi061273vSuche in Google Scholar PubMed

García-Ortega, L., Lacadena, J., Mancheño, J.M., Oñaderra, M., Kao, R., Davies, J., Olmo, N., Martínez-del-Pozo, A., and Gavilanes, J.G. (2001). Involvement of the amino-terminal β-hairpin of the Aspergillus ribotoxins on the interaction with membranes and nonspecific ribonuclease activity. Protein Sci. 10, 1658–1668.10.1110/ps.9601Suche in Google Scholar PubMed PubMed Central

García-Ortega, L., Masip, M., Mancheño, J.M., Oñaderra, M., Lizarbe, M.A., García-Mayoral, M.F., Bruix, M., Martínez- del-Pozo, A., and Gavilanes, J.G. (2002). Deletion of the NH2-terminal β-hairpin of the ribotoxin α-sarcin produces a nontoxic but active ribonuclease. J. Biol. Chem. 277, 18632–18639.10.1074/jbc.M200922200Suche in Google Scholar PubMed

García-Ortega, L., de los Ríos, V., Martínez-Ruiz, A., Oñaderra, M., Lacadena., J, Martínez-del-Pozo, A., and Gavilanes, J.G. (2005a). Anomalous electrophoretic behavior of a very acidic protein: ribonuclease U2. Electrophoresis 26, 3407–3413.10.1002/elps.200500261Suche in Google Scholar PubMed

García-Ortega, L., Lacadena, J., Villalba, M., Rodríguez, R., Crespo, J.F., Rodríguez, J., Pascual, C., Olmo, N., Oñaderra, M., Martínez-del-Pozo, A., et al. (2005b). Production and characterization of a noncytotoxic deletion variant of the Aspergillus fumigatus allergen Asp f 1 displaying reduced IgE binding. FEBS J. 272, 2536–2544.10.1111/j.1742-4658.2005.04674.xSuche in Google Scholar PubMed

García-Ortega, L., Álvarez-García, E., Gavilanes, J.G., Martínez- del-Pozo, A., and Joseph, S. (2010). Cleavage of the sarcin-ricin loop of 23S rRNA differentially affects EF-G and EF-Tu binding. Nucleic Acids Res. 38, 4108–4119.10.1093/nar/gkq151Suche in Google Scholar PubMed PubMed Central

Gasset, M., Mancheño, J.M., Lacadena, J., Turnay, J., Olmo, N., Lizarbe, M.A., Martínez-del-Pozo, A., Oñaderra, M., and Gavilanes, J.G. (1994). α-Sarcin, a ribosome-inactivating protein that translocates across the membrane of phospholipid vesicles. Curr. Top. Pept. Protein Res. 1, 99–104.Suche in Google Scholar

Glück, A. and Wool, I.G. (1996). Dependence of depurination of oligoribonucleotides by ricin A- chain on divalent cations and chelating agents. Biochem. Mol. Biol. Int. 39, 285–291.10.1080/15216549600201301Suche in Google Scholar PubMed

Herrero-Galán, E., Lacadena, J., Martínez-del-Pozo, A., Boucias, D.G., Olmo, N., Oñaderra, M., and Gavilanes, J.G. (2008). The insecticidal protein hirsutellin A from the mite fungal pathogen Hirsutella thompsonii is a ribotoxin. Proteins 72, 217–228.10.1002/prot.21910Suche in Google Scholar PubMed

Herrero-Galán, E., García-Ortega, L., Lacadena, J., Martínez- Del-Pozo, A., Olmo, N., Gavilanes, J.G., and Oñaderra, M. (2012a). Implication of an Asp residue in the ribonucleolytic activity of hirsutellin A reveals new electrostatic interactions at the active site of ribotoxins. Biochimie 94, 427–433.10.1016/j.biochi.2011.08.010Suche in Google Scholar

Herrero-Galán, E., García-Ortega, L., Lacadena, J., Martínez- Del-Pozo, A., Olmo, N., Gavilanes, J.G., and Oñaderra, M. (2012b). A non-cytotoxic but ribonucleolytically specific ribotoxin variant: implication of tryptophan residues in the cytotoxicity of hirsutellin A. Biol. Chem. 393, 449–456.10.1515/hsz-2011-0278Suche in Google Scholar

Herrero-Galán, E., García-Ortega, L., Olombrada, M., Lacadena, J., Martínez-del-Pozo, A., Gavilanes, J.G. and Oñaderra, M. (2013). Hirsutellin A: a paradigmatic example of the insecticidal function of fungal ribotoxins. Insects 4, 339–356.10.3390/insects4030339Suche in Google Scholar

Huang, K.-C., Hwang, Y.-Y., Hwang, L., and Lin, A. (1997). Characterization of a new ribotoxin gene (c-sar) from Aspergillus clavatus. Toxicon 35, 383–392.10.1016/S0041-0101(96)00170-5Suche in Google Scholar

Jennings, J.C., Olson, B.H., Roga, V., Junek, A.J., and Schuurmans, D.M. (1965). α-Sarcin, a new antitumor agent. II. Fermentation and antitumor spectrum. Appl. Microbiol. 13, 322–326.10.1128/am.13.3.322-326.1965Suche in Google Scholar

Kao, R. and Davies, J. (1999). Molecular dissection of mitogillin reveals that the fungal ribotoxins are a family of natural genetically engineered ribonucleases. J. Biol. Chem. 274, 12576–12582.10.1074/jbc.274.18.12576Suche in Google Scholar

Kao, R and Davies, J. (2000). Single amino acid substitutions affecting the specificity of the fungal ribotoxin mitogillin. FEBS Lett. 466, 87–90.10.1016/S0014-5793(99)01753-6Suche in Google Scholar

Kao, R., Martínez-Ruiz, A., Martínez-del-Pozo, A., Crameri, R., and Davies, J. (2001). Mitogillin and related fungal ribotoxins. Methods Enzymol. 341, 324–335.10.1016/S0076-6879(01)41161-XSuche in Google Scholar

Korennykh, A.V., Correll, C.C., and Piccirilli, J.A. (2007). Evidence for the importance of electrostatics in the function of two distinct families of ribosome inactivating toxins. RNA 13, 1391–1396.10.1261/rna.619707Suche in Google Scholar

Lacadena, J., Martínez-del-Pozo, A., Barbero, J.L., Mancheño, J.M., Gasset, M., Oñaderra, M., López-Otín, C., Ortega, S., García, J.L., and Gavilanes, J.G. (1994). Overproduction and purification of biologically active native fungal α-sarcin in Escherichia coli. Gene 142, 147–151.10.1016/0378-1119(94)90370-0Suche in Google Scholar

Lacadena, J., Mancheño, J.M., Martínez-Ruiz, A., Martínez- del-Pozo, A., Gasset, M., Oñaderra, M., and Gavilanes, J.G. (1995). Substitution of histidine-137 by glutamine abolishes the catalytic activity of the ribosome-inactivating protein α-sarcin. Biochem. J. 309, 581–586.10.1042/bj3090581Suche in Google Scholar

Lacadena, J., Martínez-del-Pozo, A., Lacadena, V., Martínez-Ruiz, A., Mancheño, J.M., Oñaderra, M., and Gavilanes, J.G. (1998). The cytotoxin α-sarcin behaves as a cyclizing ribonuclease. FEBS Lett. 424, 46–48.10.1016/S0014-5793(98)00137-9Suche in Google Scholar

Lacadena, J., Martínez-del-Pozo, A., Martínez-Ruiz, A., Pérez-Cañadillas, J.M., Bruix, M., Mancheño, J.M., Oñaderra, M., and Gavilanes, J.G. (1999). Role of histidine-50, glutamic acid-96, and histidine-137 in the ribonucleolytic mechanism of the ribotoxin α-sarcin. Proteins 37, 474–484.10.1002/(SICI)1097-0134(19991115)37:3<474::AID-PROT14>3.0.CO;2-NSuche in Google Scholar

Lacadena, J., Álvarez-García, E., Carreras-Sangrà, N., Herrero-Galán, E., Alegre-Cebollada, J., García-Ortega, L., Oñaderra, M., Gavilanes, J.G., and Martínez-del-Pozo, A. (2007). Fungal ribotoxins: molecular dissection of a family of natural killers. FEMS Microbiol. Rev. 31, 212–237.10.1111/j.1574-6976.2006.00063.xSuche in Google Scholar

Lamy, B., Davies, J., and Schindler, D. (1992). The Aspergillus ribonucleolytic toxins (ribotoxins). In: Genetically Engineered Toxins, A.E. Frankel, ed. (New York, USA: Marcel Dekker, Inc.), pp. 237–258.Suche in Google Scholar

Lin, A., Huang, K.C., Hwu, L., and Tzean, S.S. (1995). Production of type II ribotoxins by Aspergillus species and related fungi in Taiwan. Toxicon 33, 105–110.10.1016/0041-0101(94)00140-4Suche in Google Scholar

Liu, W.-Z., Boucias, D.G., and McCoy, C.W. (1995). Extraction and characterization of the insecticidal toxin hirsutellin A produced by Hirsutella thompsonii var. thompsonii. Exp. Mycol. 19, 254–262.10.1006/emyc.1995.1032Suche in Google Scholar

Lo, K.Y., Li, Z., Bussiere, C., Bresson, S., Marcotte, E.M., and Johnson, A.W. (2010). Defining the pathway of cytoplasmic maturation of the 60S ribosomal subunit. Mol. Cell 39, 196–208.10.1016/j.molcel.2010.06.018Suche in Google Scholar

López-Otín, C., Barber, D., Fernández-Luna, J.L., Soriano, F., and Méndez, E. (1984). The primary structure of the cytotoxin restrictocin. Eur. J. Biochem. 143, 621–634.10.1111/j.1432-1033.1984.tb08415.xSuche in Google Scholar

Loverix, S. and Steyaert, J. (2001). Deciphering the mechanism of RNase T1. Methods Enzymol. 341, 305–323.10.1016/S0076-6879(01)41160-8Suche in Google Scholar

Mancheño, J.M., Gasset, M., Lacadena, J., Martínez-del-Pozo, A., Oñaderra, M., and Gavilanes, J.G. (1995). Predictive study of the conformation of the cytotoxic protein α-sarcin: A structural model to explain α-sarcin-membrane interaction. J. Theor. Biol. 172, 259–267.10.1006/jtbi.1995.0022Suche in Google Scholar

Martínez-del-Pozo, A., Gasset, M., Oñaderra, M., and Gavilanes, J.G. (1988). Conformational study of the antitumor protein α-sarcin. Biochim. Biophys. Acta 953, 280–288.10.1016/0167-4838(88)90036-2Suche in Google Scholar

Martínez-Ruiz, A., Kao, R., Davies, J., and Martínez-del-Pozo, A. (1999a). Ribotoxins are a more widespread group of proteins within the filamentous fungi than previously believed. Toxicon 37, 1549–1563.10.1016/S0041-0101(99)00103-8Suche in Google Scholar

Martínez-Ruiz, A., Martínez-del-Pozo, A., Lacadena, J., Oñaderra, M., and Gavilanes, J.G. (1999b). Hirsutellin A displays significant homology to microbial extracellular ribonucleases. J. Invertebr. Pathol. 74, 96–97.10.1006/jipa.1999.4859Suche in Google Scholar

Martínez-Ruiz, A., García-Ortega, L., Kao, R., Lacadena, J., Oñaderra, M., Mancheño, J.M., Davies, J., Martínez-del-Pozo, A., and Gavilanes, J.G. (2001). RNase U2 and α-sarcin: A study of relationships. Methods Enzymol. 341, 335–351.10.1016/S0076-6879(01)41162-1Suche in Google Scholar

Masip, M., Lacadena, J., Mancheño, J.M., Oñaderra, M., Martínez-Ruiz, A., Martínez-del-Pozo, A., and Gavilanes, J.G. (2001). Arginine 121 is a crucial residue for the specific cytotoxic activity of the ribotoxin α-sarcin. Eur. J. Biochem. 268, 6190–6196.10.1046/j.0014-2956.2001.02566.xSuche in Google Scholar PubMed

Nielsen, K., and Boston, R.S. (2001). Ribosome-inactivating proteins: A Plant Perspective. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 785–816.10.1146/annurev.arplant.52.1.785Suche in Google Scholar PubMed

Olmo, N., Turnay, J., González de Buitrago, G., López de Silanes, I., Gavilanes, J.G., and Lizarbe, M.A. (2001). Cytotoxic mechanism of the ribotoxin α-sarcin. Induction of cell death via apoptosis. Eur. J. Biochem. 268, 2113–2123.10.1046/j.1432-1327.2001.02086.xSuche in Google Scholar PubMed

Olombrada, M., Herrero-Galán, E., Tello, D., Oñaderra, M., Gavilanes, J.G., Martínez-del-Pozo, A., and García-Ortega, L. (2013). Fungal extracellular ribotoxins as insecticidal agents. Insect. Biochem. Mol. Biol. 43, 39–46.10.1016/j.ibmb.2012.10.008Suche in Google Scholar PubMed

Olombrada, M., Martínez-del-Pozo, A., Medina, P., Budia, F., Gavilanes, J.G., and García-Ortega, L. (2014a). Fungal ribotoxins: natural protein-based weapons against insects. Toxicon 83, 69–74.10.1016/j.toxicon.2014.02.022Suche in Google Scholar PubMed

Olombrada, M., Rodríguez-Mateos, M., Prieto, D., Pla, J., Remacha, M., Martínez-del-Pozo, A., Gavilanes, J.G., Ballesta, J.P., and García-Ortega, L. (2014b). The acidic ribosomal stalk proteins are not required for the highly specific inactivation exerted by α-sarcin of the eukaryotic ribosome. Biochemistry 53, 1545–1547.10.1021/bi401470uSuche in Google Scholar PubMed

Olson, B.H., and Goerner, G.L. (1965). α-Sarcin, a new antitumor agent. I. Isolation, purification, chemical composition, and the identity of a new amino acid. Appl. Microbiol. 13, 314–321.10.1128/am.13.3.314-321.1965Suche in Google Scholar

Oñaderra, M., Mancheño, J.M., Gasset, M., Lacadena, J., Schiavo, G., Martínez-del-Pozo, A. and Gavilanes, J.G. (1993). Translocation of α-sarcin across the lipid bilayer of asolectin vesicles. Biochem. J. 295, 221–225.10.1042/bj2950221Suche in Google Scholar

Pace, C.N., Heinemann, U., Hahn, U., and Saenger, W. (1991). Ribonuclease T1: Structure, function and stability. Angew. Chem. Int. Ed. 30, 343–360.10.1002/anie.199103433Suche in Google Scholar

Parente, D., Raucci, G., Celano, B., Pacilli, A., Zanoni, L., Canevari, S., Adobati, E., Colnaghi, M.L., Dosio, F., Arpicco, S., et al. (1996). Clavin a type-1 ribosome-inactivating protein from Aspergillus clavatus IFO 8605 – cDNA isolation, heterologous expression, biochemical and biological characterization of the recombinant protein. Eur. J. Biochem. 239, 272–280.10.1111/j.1432-1033.1996.0272u.xSuche in Google Scholar

Pérez-Cañadillas, J.M., Campos-Olivas, R., Lacadena, J., Martínez-del-Pozo, A., Gavilanes, J.G., Santoro, J., Rico, M., and Bruix, M. (1998). Characterization of pKa values and titration shifts in the cytotoxic ribonuclease α-sarcin by NMR. Relationship between electrostatic interactions, structure, and catalytic function. Biochemistry 37, 15865–15876.10.1021/bi981672tSuche in Google Scholar

Pérez-Cañadillas, J.M., Santoro, J., Campos-Olivas, R., Lacadena, J., Martínez-del-Pozo, A., Gavilanes, J.G., Rico, M., and Bruix, M. (2000). The highly refined solution structure of the cytotoxic ribonuclease α-sarcin reveals the structural requirements for substrate recognition and ribonucleolytic activity. J. Mol. Biol. 299, 1061–1073.10.1006/jmbi.2000.3813Suche in Google Scholar

Rodríguez, R., López-Otín, C., Barber, D., Fernández-Luna, J.L., González, G., and Méndez, E. (1982). Amino acid sequence homologies in α-sarcin, restrictocin and mitogillin. Biochem. Biophys. Res. Commun. 108, 315–321.10.1016/0006-291X(82)91868-XSuche in Google Scholar

Sacco, G., Drickamer, K., and Wool, I.G. (1983). The primary structure of the cytotoxin α-sarcin. J. Biol. Chem. 258, 5811–5818.10.1016/S0021-9258(20)81966-8Suche in Google Scholar

Schindler, D.G. and Davies, J.E. (1977) Specific cleavage of ribosomal RNA caused by α-sarcin. Nucleic Acids Res. 4, 1097–1110.10.1093/nar/4.4.1097Suche in Google Scholar PubMed PubMed Central

Tomé-Amat, J., Herrero-Galán, E., Oñaderra, M., Martínez-Del-Pozo, A., Gavilanes, J.G., and Lacadena, J. (2015). Preparation of an engineered safer immunotoxin against colon carcinoma based on the ribotoxin hirsutellin A. FEBS J. 282, 2131–2141.10.1111/febs.13262Suche in Google Scholar PubMed

Turnay, J., Olmo, N., Jiménez, A., Lizarbe, M.A., and Gavilanes, J.G. (1993). kinetic study of the cytotoxic effect of α-sarcin, a ribosome inactivating protein from Aspergillus-giganteus, on tumour cell lines – protein biosynthesis inhibition and cell binding. Mol. Cell. Biochem. 122, 39–47.10.1007/BF00925735Suche in Google Scholar

Varga, J. and Samson, R.A. (2008). Ribotoxin genes in isolates of Aspergillus section Clavati. Antonie Van Leeuwenhoek 94, 481–485.10.1007/s10482-008-9266-7Suche in Google Scholar

Viegas, A., Herrero-Galán, E., Oñaderra, M., Macedo, A.L., and Bruix, M. (2009). Solution structure of hirsutellin A. New insights into the active site and interacting interfaces of ribotoxins. FEBS J. 276, 2381–2390.10.1111/j.1742-4658.2009.06970.xSuche in Google Scholar

Wirth, J., Martínez-del-Pozo, A., Mancheño, J.M., Martinez-Ruiz, A., Lacadena, J., Oñaderra, M., and Gavilanes, J.G. (1997). Sequence determination and molecular characterization of gigantin, a cytotoxic protein produced by the mould Aspergillus giganteus IFO 5818. Arch. Biochem. Biophys 343, 188–193.10.1006/abbi.1997.0175Suche in Google Scholar

Wool, I.G. (1997). Structure and mechanism of action of the cytotoxic ribonuclease α-sarcin. In: Ribonucleases. G. D’Alessio, and J.F. Riordan, eds. (San Diego: Academic Press Inc.), pp. 131–162.10.1016/B978-012588945-2/50005-4Suche in Google Scholar

Wool, I.G., Glück, A., and Endo, Y. (1992). Ribotoxin recognition of ribosomal RNA and a proposal for the mechanism of translocation. Trends Biochem. Sci. 17, 266–269.10.1016/0968-0004(92)90407-ZSuche in Google Scholar

Yang, X.J. and Moffat, K. (1996). Insights into specificity of cleavage and mechanism of cell entry from the crystal structure of the highly specific Aspergillus ribotoxin, restrictocin. Structure 4, 837–852.10.1016/S0969-2126(96)00090-1Suche in Google Scholar

Yoshida, H. (2001). The ribonuclease T1 family. Methods Enzymol. 341, 28–41.10.1016/S0076-6879(01)41143-8Suche in Google Scholar


Supplemental Material:

The online version of this article (DOI: 10.1515/hsz-2015-0261) offers supplementary material, available to authorized users.


Received: 2015-10-5
Accepted: 2015-11-17
Published Online: 2015-11-18
Published in Print: 2016-1-1

©2016 by De Gruyter

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2015-0261/pdf
Button zum nach oben scrollen