Startseite Inhibition of endopeptidase and exopeptidase activity of cathepsin B impairs extracellular matrix degradation and tumour invasion
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Inhibition of endopeptidase and exopeptidase activity of cathepsin B impairs extracellular matrix degradation and tumour invasion

  • Ana Mitrović , Bojana Mirković , Izidor Sosič , Stanislav Gobec und Janko Kos EMAIL logo
Veröffentlicht/Copyright: 12. November 2015

Abstract

Cathepsin B is a lysosomal cysteine protease that is implicated in a number of physiological processes, including protein turnover in lysosomes. Changes in its expression are associated with a variety of pathological processes, including cancer. Due to the structural feature, termed the occluding loop, cathepsin B differs from other cysteine proteases in possessing both, endopeptidase and exopeptidase activity. Here we investigated the impact of both cathepsin B activities on intracellular and extracellular collagen IV degradation and tumour cell invasion using new selective synthetic inhibitors, 2-{[(8-hydroxy-5-nitroquinoline-7-yl)methyl]amino}-acetonitrile (1), 8-(4-methylpiperidin-1-yl)-5-nitroquinoline (2) and 7-[(4-methylpiperidin-1yl)methyl]-5-nitroquinolin-8-ol (3). All three compounds (5 μm) reduced extracellular degradation of collagen IV by MCF-10A neoT cells by 45–70% as determined by spectrofluorimetry and they (50 μm) attenuated intracellular collagen IV degradation by 40-60% as measured with flow cytometry. Furthermore, all three compounds (5 μm) impaired MCF-10A neoT cell invasion by 40–80% as assessed by measuring electrical impedance in real time. Compounds 1 and 3 (5 μm), but not compound 2, significantly reduced the growth of MMTV-PyMT multicellular tumour spheroids. Collectively, these data suggest that the efficient strategy to impair harmful cathepsin B activity in tumour progression may include simultaneous and potent inhibition of cathepsin B endopeptidase and exopeptidase activities.


Corresponding author: Janko Kos, Faculty of Pharmacy, Department of Pharmaceutical Biology, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia; and Jožef Stefan Institute, Department of Biotechnology, Jamova cesta 39, SI-1000 Ljubljana, Slovenia, e-mail:
aAna Mitrović and Bojana Mirković: These authors contributed equally to this work.

Acknowledgments

This work was supported by the Slovenian Research Agency (grant number J4-5529 to J.K.).

References

Aggarwal, N. and Sloane, B.F. (2014). Cathepsin B: multiple roles in cancer. Proteomics Clin. Appl. 8, 427–437.10.1002/prca.201300105Suche in Google Scholar

Almeida, P.C., Nantes, I.L., Chagas, J.R., Rizzi, C.C., Faljoni-Alario, A, Carmona, E., Juliano, L., Nader, H.B., and Tersariol, I.L. (2001). Cathepsin B activity regulation. Heparin-like glycosaminogylcans protect human cathepsin B from alkaline pH-induced inactivation. J. Biol. Chem. 276, 944–951.10.1074/jbc.M003820200Suche in Google Scholar

Berardi, S., Lang, a, Kostoulas, G., Hörler, D., Vilei, E.M., and Baici, A. (2001). Alternative messenger RNA splicing and enzyme forms of cathepsin B in human osteoarthritic cartilage and cultured chondrocytes. Arthritis Rheum. 44, 1819–1831.10.1002/1529-0131(200108)44:8<1819::AID-ART319>3.0.CO;2-4Suche in Google Scholar

Bian, B., Mongrain, S., Cagnol, S., Langlois, M.-J., Boulanger, J., Bernatchez, G., Carrier, J.C., Boudreau, F., and Rivard, N. (2015). Cathepsin B promotes colorectal tumorigenesis, cell invasion, and metastasis. Mol. Carcinog. 204, 525–540.Suche in Google Scholar

Cavallo-Medved, D., Rudy, D., Blum, G., Bogyo, M., Caglic, D., and Sloane, B.F. (2009). Live-cell imaging demonstrates extracellular matrix degradation in association with active cathepsin B in caveolae of endothelial cells during tube formation. Exp. Cell Res. 315, 1234–1246.10.1016/j.yexcr.2009.01.021Suche in Google Scholar

Eisenberg, M.C., Kim, Y., Li, R., Ackerman, W.E., Kniss, D.A., and Friedman, A. (2011). Mechanistic modeling of the effects of myoferlin on tumor cell invasion. Proc. Natl. Acad. Sci. USA 108, 20078–20083.10.1073/pnas.1116327108Suche in Google Scholar

Frizler, M., Lohr, F., Furtmann, N., Kläs, J., and Gütschow, M. (2011). Structural optimization of azadipeptide nitriles strongly increases association rates and allows the development of selective cathepsin inhibitors. J. Med. Chem. 54, 396–400.10.1021/jm101272pSuche in Google Scholar

Halangk, W., Lerch, M.M., Brandt-Nedelev, B., Roth, W., Ruthenbuerger, M., Reinheckel, T., Domschke, W., Lippert, H., Peters, C., and Deussing, J. (2000). Role of cathepsin B in intracellular trypsinogen activation and the onset of acute pancreatitis. J. Clin. Invest. 106, 773–781.10.1172/JCI9411Suche in Google Scholar

Hashimoto, Y., Kakegawa, H., Narita, Y., Hachiya, Y., Hayakawa, T., Kos, J., Turk, V., and Katunuma, N. (2001). Significance of cathepsin B accumulation in synovial fluid of rheumatoid arthritis. Biochem. Biophys. Res. Commun. 283, 334–339.10.1006/bbrc.2001.4787Suche in Google Scholar

Hook, V., Toneff, T., Bogyo, M., Greenbaum, D., Medzihradszky, K.F., Neveu, J., Lane, W., Hook, G., and Reisine, T. (2005). Inhibition of cathepsin B reduces β-amyloid production in regulated secretory vesicles of neuronal chromaffin cells: evidence for cathepsin B as a candidate beta-secretase of Alzheimer’s disease. Biol. Chem. 386, 931–940.10.1515/BC.2005.151Suche in Google Scholar

Illy, C., Quraishi, O., Wang, J., Purisima, E., Vernet, T., and Mort, J.S. (1997). Role of the occluding loop in cathepsin B activity. J. Biol. Chem. 272, 1197–1202.10.1074/jbc.272.2.1197Suche in Google Scholar

Jevnikar, Z., Mirković, B., Fonović, U.P., Zidar, N., Švajger, U., and Kos, J. (2012). Three-dimensional invasion of macrophages is mediated by cysteine cathepsins in protrusive podosomes. Eur. J. Immunol. 42, 3429–3441.10.1002/eji.201242610Suche in Google Scholar

Joyce, J.A. and Hanahan, D. (2004). Multiple roles for cysteine cathepsins in cancer. Cell Cycle 3, 1516–1519.10.4161/cc.3.12.1289Suche in Google Scholar

Kelm, J.M., Timmins, N.E., Brown, C.J., Fussenegger, M., and Nielsen, L.K. (2003). Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnol. Bioeng. 83, 173–180.10.1002/bit.10655Suche in Google Scholar

Koblinski, J.E., Ahram, M., and Sloane, B.F. (2000). Unraveling the role of proteases in cancer. Clin. Chim. Acta 291, 113–135.10.1016/S0009-8981(99)00224-7Suche in Google Scholar

Kos, J., Mitrović, A., and Mirković, B. (2014). The current stage of cathepsin B inhibitors as potential anticancer agents. Future Med. Chem. 6, 1355–1371.10.4155/fmc.14.73Suche in Google Scholar

Kostoulas, G., Lang, A., Nagase, H., and Baici, A. (1999). Stimulation of angiogenesis through cathepsin B inactivation of the tissue inhibitors of matrix metalloproteinases. FEBS Lett. 455, 286–290.10.1016/S0014-5793(99)00897-2Suche in Google Scholar

Krupa, J.C., Hasnain, S., Nägler, D.K., Ménard, R., and Mort, J.S. (2002). S2′ substrate specificity and the role of His110 and His111 in the exopeptidase activity of human cathepsin B. Biochem. J. 361, 613–619.10.1042/bj3610613Suche in Google Scholar

Kuhelj, R., Dolinar, M., Pungercar, J., and Turk, V. (1995). The preparation of catalytically active human cathepsin B from its precursor expressed in Escherichia coli in the form of inclusion bodies. Eur. J. Biochem. 229, 533–539.10.1111/j.1432-1033.1995.0533k.xSuche in Google Scholar PubMed

Linebaugh, B.E., Sameni, M., Day, N.A., Sloane, B.F., and Keppler, D. (1999). Exocytosis of active cathepsin B: Enzyme activity at pH 7.0, inhibition and molecular mass. Eur. J. Biochem. 264, 100–109.10.1046/j.1432-1327.1999.00582.xSuche in Google Scholar PubMed

Mirković, B., Premzl, A., Hodnik, V., Doljak, B., Jevnikar, Z., Anderluh, G., and Kos, J. (2009). Regulation of cathepsin B activity by 2A2 monoclonal antibody. FEBS J. 276, 4739–4751.10.1111/j.1742-4658.2009.07171.xSuche in Google Scholar PubMed

Mirković, B., Renko, M., Turk, S., Sosič, I., Jevnikar, Z., Obermajer, N., Turk, D., Gobec, S., and Kos, J. (2011). Novel mechanism of cathepsin B inhibition by antibiotic nitroxoline and related compounds. ChemMedChem 6, 1351–1356.10.1002/cmdc.201100098Suche in Google Scholar

Mirković, B., Markelc, B., Butinar, M., Mitrović, A., Sosič, I., Gobec, S., Vasiljeva, O., Turk, B., Čemažar, M., Serša, G., and Kos, J. (2015). Nitroxoline impairs tumor progression in vitro and in vivo by regulating cathepsin B activity. Oncotarget 6, 19027–19042.10.18632/oncotarget.3699Suche in Google Scholar

Mohamed, M.M. and Sloane, B.F. (2006). Cysteine cathepsins: multifunctional enzymes in cancer. Nat. Rev. Cancer 6, 764–775.10.1038/nrc1949Suche in Google Scholar

Mueller-Klieser, W. (2000). Tumor biology and experimental therapeutics. Crit. Rev. Oncol. Hematol. 36, 123–139.10.1016/S1040-8428(00)00082-2Suche in Google Scholar

Murata, M., Miyashita, S., Yokoo, C., Tamai, M., Hanada, K., Hatayama, K., Towatari, T., Nikawa, T., and Katunuma, N. (1991). Novel epoxysuccinyl peptides: selective inhibitors of cathepsin B, in vitro. FEBS Lett. 280, 307–310.10.1016/0014-5793(91)80318-WSuche in Google Scholar

Musil, D., Zucic, D., Turk, D., Engh, R.A, Mayr, I., Huber, R., Popovic, T., Turk, V., Towatari, T., and Katunuma, N. (1991). The refined 2.15 Å X-ray crystal structure of human liver cathepsin B: the structural basis for its specificity. EMBO J. 10, 2321–2330.10.1002/j.1460-2075.1991.tb07771.xSuche in Google Scholar

Nägler, D.K., Storer, A.C., Portaro, F.C. V., Carmona, E., Juliano, L., and Ménard, R. (1997). Major increase in endopeptidase activity of human cathepsin B upon removal of occluding loop contacts. Biochemistry 36, 12608–12615.10.1021/bi971264+Suche in Google Scholar

Premzl, A., Zavašnik-Bergant, V., Turk, V., and Kos, J. (2003). Intracellular and extracellular cathepsin B facilitate invasion of MCF-10A neoT cells through reconstituted extracellular matrix in vitro. Exp. Cell Res. 283, 206–214.10.1016/S0014-4827(02)00055-1Suche in Google Scholar

Premzl, A., Turk, V., and Kos, J. (2006). Intracellular proteolytic activity of cathepsin B is associated with capillary-like tube formation by endothelial cells in vitro. J. Cell. Biochem. 97, 1230–1240.10.1002/jcb.20720Suche in Google Scholar PubMed

Rawlings, N.D., Waller, M., Barrett, A.J., and Bateman, A. (2014). MEROPS: The database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 42, D503–D509.10.1093/nar/gkt953Suche in Google Scholar PubMed PubMed Central

Roshy, S., Sloane, B.F., and Moin, K. (2003). Pericellular cathepsin B and malignant progression. Cancer Metastasis Rev. 22, 271–286.10.1023/A:1023007717757Suche in Google Scholar

Shoji, A., Kabeya, M., Ishida, Y., Yanagida, A., Shibusawa, Y., and Sugawara, M. (2014). Evaluation of cathepsin B activity for degrading collagen IV using a surface plasmon resonance method and circular dichroism spectroscopy. J. Pharm. Biomed. Anal. 95, 47–53.10.1016/j.jpba.2014.02.009Suche in Google Scholar

Skrzydlewska, E., Sulkowska, M., Koda, M., and Sulkowski, S. (2005). Proteolytic-antiproteolytic balance and its regulation in carcinogenesis. World J. Gastroenterol. 11, 1251–1266.10.3748/wjg.v11.i9.1251Suche in Google Scholar

Sosič, I., Mirković, B., Arenz, K., Štefane, B., Kos, J., and Gobec, S. (2013). Development of new cathepsin B inhibitors: Combining bioisosteric replacements and structure-based design to explore the structure-activity relationships of nitroxoline derivatives. J. Med. Chem. 56, 521–533.10.1021/jm301544xSuche in Google Scholar

Timmins, N.E., and Nielsen, L.K. (2007). Generation of multicellular tumor spheroids by the hanging-drop method. Methods Mol. Med. 140, 141–151.10.1007/978-1-59745-443-8_8Suche in Google Scholar

Towatari, T., Nikawa, T., Murata, M., Yokoo, C., Tamai, M., Hanada, K., and Katunuma, N. (1991). Novel epoxysuccinyl peptides: A selective inhibitor of cathepsin B, in vivo. FEBS Lett. 280, 311–315.10.1016/0014-5793(91)80319-XSuche in Google Scholar

Yamamoto, A., Hara, T., Tomoo, K., Ishida, T., Fujii, T., Hata, Y., Murata, M., and Kitamura, K. (1997). Binding mode of CA074, a specific irreversible inhibitor, to bovine cathepsin B as determined by X-ray crystal analysis of the complex. J. Biochem. 121, 974–977.10.1093/oxfordjournals.jbchem.a021682Suche in Google Scholar PubMed

Received: 2015-9-1
Accepted: 2015-11-7
Published Online: 2015-11-12
Published in Print: 2016-1-1

©2016 by De Gruyter

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2015-0236/pdf?lang=de
Button zum nach oben scrollen