Kinin B1 receptor mediates memory impairment in the rat hippocampus
-
Káris Ester Dong-Creste
, Ticiana Baraldi-Tornisielo , Ariadiny Lima Caetano , Fernand Gobeil , Wagner Ricardo Montor , Tania Araujo Viel und Hudson Sousa Buck
Abstract
The bradykinin (BK) receptors B1R and B2R are involved in inflammatory responses and their activation can enhance tissue damage. The B2R is constitutively expressed and mediates the physiologic effects of BK, whereas B1R expression is induced after tissue damage. Recently, they have been involved with Alzheimer’s disease, ischemic stroke and traumatic brain injury (TBI). In this study, we investigated the role of bradykinin in short and long-term memory consolidation (STM and LTM). It was observed that bilateral injection of BK (300 pmol/μl) disrupted the STM consolidation but not LTM, both evaluated by inhibitory avoidance test. The STM disruption due to BK injection was blocked by the previous injection of the B1R antagonist des-Arg10-HOE140 but not by the B2R antagonist HOE140. Additionally, the injection of the B1 agonist desArg9-BK disrupted STM and LTM consolidation at doses close to physiological concentration of the peptide (2.3 and 37.5 pmol, respectively) which could be reached during tissue injury. The presence of B1R located on glial cells around the implanted guide cannula used for peptide injection was confirmed by immunofluorescence. These data imply in a possible participation of B1R in the STM impairment observed in TBI, neuroinflammation and neurodegeneration.
Acknowledgments
We thank Professor Tatiana Rosado Rosenstock for the assistance in the image acquisition. This work was supported by grants from FAP-Santa Casa, Fundação de Amparo a Pesquisa no Estado de Sao Paulo (FAPESP 2007/04800-0 and 2013/013656-1). H.S. Buck holds a Level 2 CNPQ fellowship (303283/2014-9). K.E. Dong-Creste and T. Baraldi-Tornisielo received fellowships from CAPES-PROSUP. Confocal images were obtained at the INFAR/UNIFESP Confocal and Flow Cytometry Facility, which is supported by FAPESP.
References
Albert-Weissenberger, C., Stetter, C., Meuth, S.G., Gobel, K., Bader, M., Siren, A.L., and Kleinschnitz, C. (2012). Blocking of bradykinin receptor B1 protects from focal closed head injury in mice by reducing axonal damage and astroglia activation. J. Cereb. Blood Flow Metab. 32, 1747–1756.10.1038/jcbfm.2012.62Suche in Google Scholar
Almeida e Silva, T.C. and Pela, I.R. (1978). Change in rectal temperature of the rabbit by intraventricular injection of bradykinin and related kinins. Agents Actions 8, 102–107.10.1007/BF01972410Suche in Google Scholar
Amaral, F.A., Lemos, M.T., Dong, K.E., Bittencourt, M.F., Caetano, A.L., Pesquero, J.B., Viel, T.A., and Buck, H.S. (2010). Participation of kinin receptors on memory impairment after chronic infusion of human amyloid-beta 1-40 peptide in mice. Neuropeptides 44, 93–97.10.1016/j.npep.2009.10.006Suche in Google Scholar
Ataei, N., Sabzghabaee, A.M., and Movahedian, A. (2015). Calcium/calmodulin-dependent protein kinase II is a ubiquitous molecule in human long-term memory synaptic plasticity: a systematic review. Int. J. Prev. Med. 6, 88–103.10.4103/2008-7802.164831Suche in Google Scholar
Austinat, M., Braeuninger, S., Pesquero, J.B., Brede, M., Bader, M., Stoll, G., Renné, T., and Kleinschnitz, C. (2009). Blockade of bradykinin receptor B1 but not bradykinin receptor B2 provides protection from cerebral infarction and brain edema. Stroke 40, 285–293.10.1161/STROKEAHA.108.526673Suche in Google Scholar
Bascands, J.L., Pecher, C., Rouaud, S., Emond, C., Tack, J. L., Bastie, M.J. Burch, R., Regoli, D., and Girolami, J.P. (1993). Evidence for existence of two distinct bradykinin receptors on rat mesangial cells. Am. J. Physiol. 264, F548–556.10.1152/ajprenal.1993.264.3.F548Suche in Google Scholar
Bhoola, K.D., Figueroa, C.D., and Worthy, K. (1992). Bioregulation of kinins: kallikreins, kininogens, and kininases. Pharmacol. Rev. 44, 1–80.Suche in Google Scholar
Buccafusco, J.J. and Serra, M. (1985). Role of cholinergic neurons in the cardiovascular responses evoked by central injection of bradykinin or angiotensin II in conscious rats. Eur. J. Pharmacol. 113, 43–51.10.1016/0014-2999(85)90341-3Suche in Google Scholar
Caetano, A.L., Viel, T.A., Bittencourt, M.F., Araujo, M.S., De Angelis, K., and Buck, H.S. (2010). Change in central kinin B2 receptor density after exercise training in rats. Auton. Neurosci. 158, 71–78.10.1016/j.autneu.2010.06.013Suche in Google Scholar PubMed
Caetano, A.L., Dong-Creste, K.E., Amaral, F.A., Monteiro-Silva, K.C., Pesquero, J.B., Araujo, M.S., Montor, W.R., Viel, T.A., and Buck, H.S. (2015). Kinin B2 receptor can play a neuroprotective role in Alzheimer’s disease. Neuropeptides 53, 51–62.10.1016/j.npep.2015.09.001Suche in Google Scholar PubMed
Campos, M.M., Ongali, B., De Souza Buck, H., Schanstra, J.P., Girolami, J.P., Chabot, J.G., and Couture, R. (2005). Expression and distribution of kinin B1 receptor in the rat brain and alterations induced by diabetes in the model of streptozotocin. Synapse 57, 29–37.10.1002/syn.20150Suche in Google Scholar PubMed
Chai, K.X., Ni, A., Wang, D,, Ward, D.C., Chao, J., Chao, L. (1996). Genomic DNA sequence, expression, and chromosomal localization of the human B1 bradykinin receptor gene BDKRB1. Genomics. 31, 51–57.10.1006/geno.1996.0008Suche in Google Scholar
Cholewinski, A.J., Stevens, G., McDermott, A.M., Wilkin, G.P. (1991). Identification of B2 bradykinin binding sites on cultured cortical astrocytes. J. Neurochem. 57, 1456–1458.10.1111/j.1471-4159.1991.tb08314.xSuche in Google Scholar
Cloutier, F., Ongali, B., Campos, M.M., Thibault, G., Neugebauer, W., and Couture, R. (2004). Correlation between brain bradykinin receptor binding sites and cardiovascular function in young and adult spontaneously hypertensive rats. Br. J. Pharmacol. 142, 285–296.10.1038/sj.bjp.0705759Suche in Google Scholar
Correa, F.M., Innis, R.B., Uhl, G.R., and Snyder, S.H. (1979). Bradykinin like immunoreactive neuronal systems localized histochemically in rat brain. Proc. Natl. Acad. Sci. USA 76, 1489–1493.10.1073/pnas.76.3.1489Suche in Google Scholar
De Sousa Buck, H., Ongali, B., Thibault, G., Lindsey, C.J., and Couture R. (2002). Autoradiographic detection of kinin receptors in the human medula of control, hypertensive and diabetic donors. Can. J. Physiol. Pharmacol. 80, 249–257.10.1139/y02-050Suche in Google Scholar
Dutra, R.C., Leite, D.F., Bento, A.F., Manjavachi, M.N., Patrício, E.S., Figueiredo, C.P., Pesquero, J.B., and Calixto, J.B. (2011). The role of kinin receptors in preventing neuroinflammation and its clinical severity during experimental autoimmune encephalomyelitis in mice. PLoS One 6, e27875.10.1371/journal.pone.0027875Suche in Google Scholar
Elrod, K., Okamoto, H., Greenbaum, L.M., and Buccafusco, J.J. (1986). Inactivation of kallikrein and kininases and stabilization of whole rat brain kinin levels following focused microwave irradiation. Neurochem. Res. 11, 1463–1471.10.1007/BF00966225Suche in Google Scholar
Fujiwara, Y., Mantione, C.R., and Yamamura, H.I. (1998). Identification of B2 bradykinin binding sites in guinea-pig brain. Eur. J. Pharmacol. 147, 487-488.10.1016/0014-2999(88)90187-2Suche in Google Scholar
Göbel, K., Pankratz, S., Schneider-Hohendorf, T., Bittner, S., Schuhmann, M.K., Langer, H.F., Stoll, G., Wiendl, H., Kleinschnitz, C., and Meuth, S.G. (2011). Blockade of the kinin receptor B1 protects from autoimmune CNS disease by reducing leukocyte trafficking. J. Autoimmun. 36, 106–114.10.1016/j.jaut.2010.11.004Suche in Google Scholar PubMed
Hidalgo, C. and Núñez, M.T. (2007). Calcium, iron and neuronal function. IUBMB Life 59, 280–285.10.1080/15216540701222906Suche in Google Scholar PubMed
Hori, S. (1968). The presence of bradykinin-like polypeptides, kinin-releasing and destroying activity in brain. Jpn. J. Physiol. 18, 772–787.10.2170/jjphysiol.18.772Suche in Google Scholar
Ifuku, M., Färber, K., Okuno, Y., Yamakawa, Y., Miyamoto, T., Nolte, C., Merrino, V.F., Kita, S., Iwamoto, T., Komuro, I., et al. (2007). Bradykinin-induced microglial migration mediated by B1-bradykinin receptors depends on Ca2+ influx via reverse-mode activity of the Na+/Ca2+ exchanger. J. Neurosci. 27, 13065–13073.10.1523/JNEUROSCI.3467-07.2007Suche in Google Scholar
Iores-Marçal, L.M., Viel, T.A., Buck, H.S., Nunes, V.A., Gozzo, A.J., Cruz-Silva, I., Miranda, A., Shimamoto, K., Ura, N., and Araujo, M.S. (2006). Bradykinin release and inactivation in brain of rats submitted to an experimental model of Alzheimer’s disease. Peptides 27, 3363–3369.10.1016/j.peptides.2006.08.012Suche in Google Scholar
Izquierdo, I. (2002). Memória. Porto Alegre: Artmed; 96 p.Suche in Google Scholar
Izquierdo, I. and Medina, J.H. (1997). Memory formation: the sequence of biochemical events in the hippocampus and its connection to activity in other brain structures. Neurobiol. Learn. Mem. 68, 285–316.10.1006/nlme.1997.3799Suche in Google Scholar
Izquierdo, I., Izquierdo, L.A., Barros, D.M., Mello e Souza, T., de Souza, M.M., Quevedo, J., Rodrigues, C., Sant’Anna, M.K., Madrugada, M., and Medina, J.H. (1998). Differential involvement of cortical receptor mechanisms in working, short-term and long-term memory. Behav. Pharmacol. 9, 421–427.10.1097/00008877-199809000-00005Suche in Google Scholar
Kariya, K., Iwaki, H., Ihda, M., Maruta, E., and Murase, M. (1981). Central action of bradykinin. 1. Electroencephalogram of bradykinin and its degradation system in rat brain. Jpn. J. Pharmacol. 31, 261–267.10.1016/S0021-5198(19)52874-8Suche in Google Scholar
Kozlowski, M.R., Rosser, M.P., and Hall, E. (1988). Identification of 3Hbradykinin binding sites in PC-12 cells and brain. Neuropeptides 12, 207–211.10.1016/0143-4179(88)90056-XSuche in Google Scholar
Lee, S.J., Escobedo-Lozoya, Y., Szatmari, E.M., and Yasuda, R. (2009). Activation of CaMKII in single dendritic spines during long-term potentiation. Nature 458, 299–304.10.1038/nature07842Suche in Google Scholar
Leeb-Lunderberg, L.M., Marceau, F., Müller-Esterl, W., Pettibone, D.J., and Zuraw, B.L. (2005). International union of pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol. Rev. 57, 27–77.10.1124/pr.57.1.2Suche in Google Scholar
Levin, H.S. and Diaz-Arrastia, R.R. (2015). Diagnosis, prognosis, and clinical management of mild traumatic brain injury. Lancet Neurol. 14, 506–517.10.1016/S1474-4422(15)00002-2Suche in Google Scholar
Lindsey, C.J., Buck, H.S., Fior-Chadi, D.R., and Lapa, R.C. (1997). Pressor effect mediated by bradykinin in the paratrigeminal nucleus of the rat. J. Physiol. 502, 119–129.10.1111/j.1469-7793.1997.119bl.xSuche in Google Scholar
Liu, P., Li, Y.S., Quartermain, D., Boutajangout, A., and Ji, Y. (2013). Inhaled nitric oxide improves short term memory and reduces the inflammatory reaction in a mouse model of mild traumatic brain injury. Brain Res. 1522, 67–75.10.1016/j.brainres.2013.05.032Suche in Google Scholar
Lynch, M.A. (2004). Long-term potentiation and memory. Physiol Rev. 84, 87–136.10.1152/physrev.00014.2003Suche in Google Scholar
Ma, J.X., Wang, D.Z., Ward, D.C., Chen, L., Dessai, T., Chao, J., and Chao, L. (1994a). Structure and chromosomal localization of the gene (BDKRB2) encoding human bradykinin B2 receptor. Genomics 23, 362–369.10.1006/geno.1994.1512Suche in Google Scholar
Ma, J.X., Wang, D.Z., Chao, L., and Chao, J. (1994b). Cloning, sequence analysis and expression of the gene encoding the mouse bradykinin B2 receptor. Gene 149, 283–288.10.1016/0378-1119(94)90162-7Suche in Google Scholar
Marceau, F. and Bachvarov, D.R. (1998). Kinin receptors. Clin. Rev. Allergy Immunol. 16, 385–401.10.1007/BF02737658Suche in Google Scholar
Mathis, S.A., Criscimagna, N.L., and Leeb-lundberg, L.M.F. (1996). B1 and B2 kinin receptors mediate distinct patterns of intracellular Ca2+ signaling in single cultured vascular smooth muscle cells. Mol. Pharmacol. 50, 128–139.Suche in Google Scholar
Naffah-Mazzacoratti, Mda. G., Gouveia, T.L., Simões, P.S., and Perosa, S.R. (2014). What have we learned about the kallikrein-kinin and renin-angiotensin systems in neurological disorders? World J. Biol. Chem. 5, 130–140.Suche in Google Scholar
Okada, Y., Tuchiya, J., Yagyu, M., Kozawa, S., and Kariya, K. (1977). Synthesis of bradykinin fragments and their effect on pentobarbital sleeping time in the mouse. Neuropharmacology 16, 381–383.10.1016/0028-3908(77)90076-4Suche in Google Scholar
Ongali, B., Buck, Hde S., Cloutier, F., Legault, F., Regoli, D., Lambert, C., Thibault, G., and Couture, R. (2003). Chronic effects of angiotensin-converting enzyme inhibition on kinin receptor binding sites in the rat spinal cord. Am. J. Physiol. Heart Circ. Physiol. 284, H1949–1958.10.1152/ajpheart.01113.2002Suche in Google Scholar
Ongali, B., Hellal, F., Rodi, D., Plotkine, M., Marchand-Verrecchia, C., Pruneau, D., and Couture, R. (2006). Autoradiographic analysis of mouse brain kinin B1 and B2 receptors after closed head trauma and ability of Anatibant mesylate to cross the blood-brain barrier. J. Neurotrauma 23, 696–707.10.1089/neu.2006.23.696Suche in Google Scholar
Paxinos, G., Watson, C. ( 2007). The rat brain in stereotaxic coordinates. 6th Edition. Academic Press, San Diego, USA.Suche in Google Scholar
Pearson, L., Lambert, G.A., and Lang, W.J. (1969). Centrally mediated cardiovascular and EEG responses to bradykinin and eledoison. Eur. J. Pharmacol. 8, 153–158.10.1016/0014-2999(69)90070-3Suche in Google Scholar
Perez-Polo, J.R., Rea, H.C., Johnson, K.M., Parsley, M.A., Unabia, G.C., Xu, G.Y., Prough, D., DeWitt, D.S., Spratt, H., and Hulsebosch, C.E. (2015). A rodent model of mild traumatic brain blast injury. J. Neurosci. Res. 93, 549–561.10.1002/jnr.23513Suche in Google Scholar
Perry, D.C. and Snyder, S.H. (1984) Identification of bradykinin in mammalian brain. J. Neurochem. 43, 1072–1080.10.1111/j.1471-4159.1984.tb12846.xSuche in Google Scholar
Plesnila, N., Schulz, J., Stoffel, M., Eriskat, J., Pruneau, D., and Baethmann, A. (2001). Role of bradykinin B2 receptors in the formation of vasogenic brain edema in rats. J. Neurotrauma 18, 1049–1058.10.1089/08977150152693746Suche in Google Scholar
Prado, G.N., Taylor, L., Zhou, X., Ricupero, D., Mierke, D.F., and Polgar, P. (2002). Mechanisms regulating the expression, self-maintenance, and signaling-function of the bradykinin B2 and B1 receptors. J. Cell Physiol. 193, 275–286.10.1002/jcp.10175Suche in Google Scholar
Prat, A., Weinrib, L., Becher, B., Poirier, J., Duquette, P., Couture, R., and Antel, J.P. (1999). Bradykinin B1 receptor expression and function on T lymphocytes in active multiple sclerosis. Neurology 53, 2087–2092.10.1212/WNL.53.9.2087Suche in Google Scholar
Prat, A., Biernacki, K., Pouly, S., Nalbantoglu, J., Couture, R., and Antel, J.P. (2000). Kinin B1 receptor expression and function on human brain endothelial cells. J. Neuropat. Exp. Neurol. 59, 896–906.10.1093/jnen/59.10.896Suche in Google Scholar
Raidoo, D.M. and Bhoola, K.D. (1997). Kinin receptors on human neurones. J. Neuroimmunol. 77, 39–44.10.1016/S0165-5728(97)00048-9Suche in Google Scholar
Raidoo, D.M., Ramchurren, N., Naidoo, Y., Naidoo, S., Müller-Esterl, W., and Bhoola, K.D. (1996). Visualisation of bradykinin B2 receptors on human brain neurons. Immunopharmacology 33, 104–107.10.1016/0162-3109(96)00021-5Suche in Google Scholar
Regoli, D. and Barabe, J. (1980). Pharmacology of bradykinin and related kinins. Pharmacol. Rev. 32, 1–46.Suche in Google Scholar
Regoli, D., Nsa Allogho, S., Rizzi, A., and Gobeil, F.J. (1998). Bradykinin receptors and their antagonists. Eur. J. Pharmacol. 348, 1–10.10.1016/S0014-2999(98)00165-4Suche in Google Scholar
Regoli, D., Rizzi, A., Perron, S.I., and Gobeil, F.Jr. (2001). Classification of kinin receptors. Biol. Chem. 382, 31–35.10.1515/BC.2001.005Suche in Google Scholar PubMed
Savard, M., Labonté, J., Dubuc, C., Neugebauer, W., D’Orléans-Juste, P., and Gobeil, F. Jr. (2013). Further pharmacological evaluation of a novel synthetic peptide bradykinin B2 receptor agonist. Biol. Chem. 394, 353–360.10.1515/hsz-2012-0295Suche in Google Scholar
Schilling, L. and Wahl, M. (1999). Mediators of cerebral edema. Adv. Exp. Med. Biol. 474, 123–141.10.1007/978-1-4615-4711-2_11Suche in Google Scholar
Schulze-Topphoff, U., Prat, A., Prozorovski, T., Siffrin, V., Paterka, M., Herz, J., Bendix. I., Ifergan, I., Schadock, I., Mori, M.A., et al. (2009). Activation of kinin receptor B1 limits encephalitogenic T lymphocyte recruitment to the central nervous system. Nat. Med. 15, 788–793.10.1038/nm.1980Suche in Google Scholar
Sharif, N.A., and Whiting, R.L., (1991). Identification of B2-bradykinin receptors in guinea pig brain regions, spinal cord and peripheral tissues. Neurochem. Int. 18, 89–96.10.1016/0197-0186(91)90041-BSuche in Google Scholar
Simões, H.G., Asano, R.Y., Sales, M.M., Browne, R.A., Arsa, G., Motta-Santos, D., Puga, G.M., Lima, L.C., Campbell, C.S., and Franco, O.L. (2013). Type 2 diabetes elicits lower nitric oxide, bradykinin concentration and kallikrein activity together with higher DesArg(9)-BK and reduced post-exercise hypotension compared to non-diabetic condition. PLoS One 8, e80348.10.1371/journal.pone.0080348Suche in Google Scholar PubMed PubMed Central
Trabold, R., Erös, C., Zweckberger, K., Relton, J., Beck, H., Nussberger, J., Müller-Esterl, W., Bader, M., Whalley, E., and Plesnila, N. (2010). The role of bradykinin B1 and B2 receptors for secondary brain damage after traumatic brain injury in mice. J. Cereb. Blood Flow Metab. 30, 130–139.10.1038/jcbfm.2009.196Suche in Google Scholar PubMed PubMed Central
Unger, T., Rockhold, R. W., YukimurA, T., Rettio, R., Rasher, W., and Ganten, G. (1981). Role of kinins and substance P in the central blood pressure regulation of normotensive and spontaneously hypertensive rats. In: Central Nervous System Mechanisms in Hypertension, J.P. Buckley and C.M. Ferrario, eds. (New York, NY, USA: Raven Press). pp. 115–127.Suche in Google Scholar
Unterberg, A., Dautermann, C., Baethmann, A., and Muller-Esterl, W. (1986). The kallikrein-kinin system as mediator in vasogenic brain edema. Part 3: inhibition of the kallikrein-kinin system in traumatic brain swelling. J. Neurosurg. 64, 269–276.10.3171/jns.1986.64.2.0269Suche in Google Scholar PubMed
Vianna, M.R., Barros, D.M., Silva, T., Choi, H., Madche, C., Rodrigues, C., Medina, J.H., and Izquierdo, I. (2000). Pharmacological demonstration of the differential involvement of protein kinase C isoforms in short- and long-term memory formation and retrieval of one-trial avoidance in rats. Phychopharmacology 150, 77–84.10.1007/s002130000396Suche in Google Scholar PubMed
Viel, T.A. and Buck, H.S. (2011). Kallikrein-kinin system mediated inflammation in Alzheimer’s disease in vivo. Curr. Alzheimer Res. 8, 59–66.10.2174/156720511794604570Suche in Google Scholar PubMed
Viel, T.A., Lima Caetano, A., Nasello, A.G., Lancelotti, C.L., Nunes, V.A., Araujo, M.S., and Buck, H.S. (2008). Increases of kinin B1 and B2 receptors binding sites after brain infusion of amyloid-β1-40 peptide in rats. Neurobiol. Aging 29, 1805–1814.10.1016/j.neurobiolaging.2007.04.019Suche in Google Scholar PubMed
Wang, Q. and Wang, J. (2002). Injection of bradykinin or cyclosporine A to hippocampus induces Alzheimer-like phosphorylation of Tau and abnormal behavior in rats. Chin. Med. J. 115, 884–887.Suche in Google Scholar
Wang, H.L., Ma, R.H., Fang, H., Xue, Z.G., and Liao, Q.W. (2015). Impaired spatial learning memory after isoflurane anesthesia or appendectomy in aged mice is associated with microglia activation. J. Cell Death 8, 9–19.10.4137/JCD.S30596Suche in Google Scholar
Wotherspoon, G. and Winter, J. (2000). Bradykinin B1 receptor is constitutively expressed in the rat sensory nervous system. Neurosci. Lett. 294, 175–178.10.1016/S0304-3940(00)01561-5Suche in Google Scholar
Yang, X., Taylor, L., Yu, J., Fenton, MJ., and Polgar, P. (2001). Mediator caused induction of a human bradykinin B1 receptor minigene: participation of c-Jun in the process. J. Cell. Biochem. 82, 163–170.10.1002/jcb.1116Suche in Google Scholar PubMed
Yang, S.H., Gustafson, J., Gangidine, M., Stepien, D., Schuster, R., Pritts, T.A., Goodman, M.D., Remick, D.G., and Lentsch, A.B. (2013). A murine model of mild traumatic brain injury exhibiting cognitive and motor deficits. J. Surg. Res. 184, 981–988.10.1016/j.jss.2013.03.075Suche in Google Scholar PubMed PubMed Central
Zamberletti, E., Gabaglio, M., Prini, P., Rubino, T., and Parolaro, D. (2015). Cortical neuroinflammation contributes to long-term cognitive dysfunctions following adolescent Δ9-tetrahydrocannabinol treatment in female rats. Eur. Neuropsychopharmacol. pii: S0924-977X(15)00323-5.Suche in Google Scholar
©2016 by De Gruyter
Artikel in diesem Heft
- Frontmatter
- Guest Editorial
- Highlight: Kinin 2015 at São Paulo, Brazil
- Kinin 2015 – International Meeting on Kinin System and Peptide Receptors
- Kinins and microglial responses in bipolar disorder: a neuroinflammation hypothesis
- Kinins and peptide receptors
- The role of N-terminal and C-terminal Arg residues from BK on interaction with kinin B2 receptor
- Genetic analysis of hereditary angioedema in a Brazilian family by targeted next generation sequencing
- Cellular localisation of the kinin B1R in the pancreas of streptozotocin-treated rat and the anti-diabetic effect of the antagonist SSR240612
- New mutations in SERPING1 gene of Brazilian patients with hereditary angioedema
- Differential effect of intranasally administrated kinin B1 and B2 receptor antagonists in Alzheimer’s disease mice
- Kinin B1 receptor mediates memory impairment in the rat hippocampus
- Safety and pharmacokinetics of a kinin B1 receptor peptide agonist produced with different counter-ions
- Minireview
- Functional organization of human SAMHD1 and mechanisms of HIV-1 restriction
- Corrigendum
- Corrigendum to: Defects of corneocyte structural proteins and epidermal barrier in atopic dermatitis
Artikel in diesem Heft
- Frontmatter
- Guest Editorial
- Highlight: Kinin 2015 at São Paulo, Brazil
- Kinin 2015 – International Meeting on Kinin System and Peptide Receptors
- Kinins and microglial responses in bipolar disorder: a neuroinflammation hypothesis
- Kinins and peptide receptors
- The role of N-terminal and C-terminal Arg residues from BK on interaction with kinin B2 receptor
- Genetic analysis of hereditary angioedema in a Brazilian family by targeted next generation sequencing
- Cellular localisation of the kinin B1R in the pancreas of streptozotocin-treated rat and the anti-diabetic effect of the antagonist SSR240612
- New mutations in SERPING1 gene of Brazilian patients with hereditary angioedema
- Differential effect of intranasally administrated kinin B1 and B2 receptor antagonists in Alzheimer’s disease mice
- Kinin B1 receptor mediates memory impairment in the rat hippocampus
- Safety and pharmacokinetics of a kinin B1 receptor peptide agonist produced with different counter-ions
- Minireview
- Functional organization of human SAMHD1 and mechanisms of HIV-1 restriction
- Corrigendum
- Corrigendum to: Defects of corneocyte structural proteins and epidermal barrier in atopic dermatitis