Abstract
T-cell receptor (TCR) triggering by antigens activates a sophisticated intracellular signaling network leading to transcriptional activation, proliferation and differentiation of T cells. These events ultimately culminate in adaptive immune responses. Over recent years it has become evident that reactive oxygen species (ROS) play an important role in T-cell activation. It is now clear that ROS are involved in the regulation of T-cell mediated physiological and pathological processes. Upon TCR triggering, T cells produce oxidants, which originate from different cellular sources. In addition, within inflamed tissues, T cells are exposed to exocrine ROS produced by activated phagocytes or other ROS-producing cells. Oxidative modifications can have different effects on T-cell function. Indeed, they can stimulate T-cell activation but they can be also detrimental. These opposite effects of oxidation likely depend on different factors such as ROS concentration and source and also on the differentiation status of the T cells. Despite the well-stablished fact that ROS represent important modulators of T-cell activation, the precise molecular mechanisms of their action are far from clear. Here, we summarize the present knowledge on redox regulation of T-cell function with a particular emphasis on the redox regulation of TCR signaling.
Acknowledgments
This work was supported by the German Research Foundation (DFG) grants SI861/3-1, SFB854 (project B19), BO3643/3-1, SFB1027 (project C4) and the HOMFOR excellent research grant by the Medical School, University of Saarland.
References
Acuto, O., Di Bartolo, V., and Michel, F. (2008). Tailoring T-cell receptor signals by proximal negative feedback mechanisms. Nat. Rev. Immunol. 8, 699–712.10.1038/nri2397Suche in Google Scholar PubMed
Akhand, A.A., Du, J., Liu, W., Hossain, K., Miyata, T., Nagase, F., Kato, M., Suzuki, H., and Nakashima, I. (2002). Redox-linked cell surface-oriented signaling for T-cell death. Antioxid. Redox Sign. 4, 445–454.10.1089/15230860260196236Suche in Google Scholar PubMed
Albrecht, S.C., Sobotta, M.C., Bausewein, D., Aller, I., Hell, R., Dick, T.P., and Meyer, A.J. (2014). Redesign of genetically encoded biosensors for monitoring mitochondrial redox status in a broad range of model eukaryotes. J. Biomol. Screen. 19, 379–386.10.1177/1087057113499634Suche in Google Scholar PubMed
Arndt, B., Poltorak, M., Kowtharapu, B.S., Reichardt, P., Philipsen, L., Lindquist, J.A., Schraven, B., and Simeoni, L. (2013). Analysis of TCR activation kinetics in primary human T cells upon focal or soluble stimulation. J. Immunol. Methods 387, 276–283.10.1016/j.jim.2012.11.006Suche in Google Scholar PubMed
Bedard, K. and Krause, K.H. (2007). The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 87, 245–313.10.1152/physrev.00044.2005Suche in Google Scholar PubMed
Belikov, A.V., Schraven, B., and Simeoni, L. (2014). TCR-triggered extracellular superoxide production is not required for T-cell activation. Cell Commun. Sign. 12, 50.10.1186/s12964-014-0050-1Suche in Google Scholar PubMed PubMed Central
Belousov, V.V., Fradkov, A.F., Lukyanov, K.A., Staroverov, D.B., Shakhbazov, K.S., Terskikh, A.V., and Lukyanov, S. (2006). Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat. Methods 3, 281–286.10.1038/nmeth866Suche in Google Scholar PubMed
Bogeski, I. and Niemeyer, B.A. (2014). Redox regulation of ion channels. Antioxid. Redox Sign. 21, 859–862.10.1089/ars.2014.6019Suche in Google Scholar PubMed PubMed Central
Bogeski, I., Bozem, M., Sternfeld, L., Hofer, H.W., and Schulz, I. (2006). Inhibition of protein tyrosine phosphatase 1B by reactive oxygen species leads to maintenance of Ca2+ influx following store depletion in HEK 293 cells. Cell Calcium 40, 1–10.10.1016/j.ceca.2006.03.003Suche in Google Scholar PubMed
Bogeski, I., Kappl, R., Kummerow, C., Gulaboski, R., Hoth, M., and Niemeyer, B.A. (2011). Redox regulation of calcium ion channels: chemical and physiological aspects. Cell Calcium 50, 407–423.10.1016/j.ceca.2011.07.006Suche in Google Scholar PubMed
Bogeski, I., Kummerow, C., Al-Ansary, D., Schwarz, E.C., Koehler, R., Kozai, D., Takahashi, N., Peinelt, C., Griesemer, D., Bozem, M., et al. (2010). Differential redox regulation of ORAI ion channels: a mechanism to tune cellular calcium signaling. Sci. Sign. 3, ra24.10.1126/scisignal.2000672Suche in Google Scholar
Breckwoldt, M.O., Pfister, F.M., Bradley, P.M., Marinkovic, P., Williams, P.R., Brill, M.S., Plomer, B., Schmalz, A., St Clair, D.K., Naumann, R., et al. (2014). Multiparametric optical analysis of mitochondrial redox signals during neuronal physiology and pathology in vivo. Nat. Med. 20, 555–560.10.1038/nm.3520Suche in Google Scholar
Burkhardt, J.K., Carrizosa, E., and Shaffer, M.H. (2008). The actin cytoskeleton in T cell activation. Ann. Rev. Immunol. 26, 233–259.10.1146/annurev.immunol.26.021607.090347Suche in Google Scholar
Capasso, M., Bhamrah, M.K., Henley, T., Boyd, R.S., Langlais, C., Cain, K., Dinsdale, D., Pulford, K., Khan, M., Musset, B., et al. (2010). HVCN1 modulates BCR signal strength via regulation of BCR-dependent generation of reactive oxygen species. Nat. Immunol. 11, 265–272.10.1038/ni.1843Suche in Google Scholar
Caza, T.N., Talaber, G., and Perl, A. (2012). Metabolic regulation of organelle homeostasis in lupus T cells. Clin. Immunol. 144, 200–213.10.1016/j.clim.2012.07.001Suche in Google Scholar
Chakraborty, A.K. and Weiss, A. (2014). Insights into the initiation of TCR signaling. Nat. Immunol. 15, 798–807.10.1038/ni.2940Suche in Google Scholar
Chakravarti, B. and Abraham, G.N. (2002). Effect of age and oxidative stress on tyrosine phosphorylation of ZAP-70. Mech. Ageing Dev. 123, 297–311.10.1016/S0047-6374(01)00350-5Suche in Google Scholar
Chaudhri, G., Clark, I.A., Hunt, N.H., Cowden, W.B., and Ceredig, R. (1986). Effect of antioxidants on primary alloantigen-induced T cell activation and proliferation. J. Immunol. 137, 2646–2652.10.4049/jimmunol.137.8.2646Suche in Google Scholar
Chaudhri, G., Hunt, N.H., Clark, I.A., and Ceredig, R. (1988). Antioxidants inhibit proliferation and cell surface expression of receptors for interleukin-2 and transferrin in T lymphocytes stimulated with phorbol myristate acetate and ionomycin. Cell. Immunol. 115, 204–213.10.1016/0008-8749(88)90174-8Suche in Google Scholar
Chiarugi, P. (2008). Src redox regulation: there is more than meets the eye. Mol. Cells 26, 329–337.Suche in Google Scholar
Chrobot, A.M., Szaflarska-Szczepanik, A., and Drewa, G. (2000). Antioxidant defense in children with chronic viral hepatitis B and C. Med. Sci. Monit. 6, 713–718.Suche in Google Scholar
Ckless, K. (2014). Redox proteomics: from bench to bedside. Adv. Exp. Med. Biol. 806, 301–317.10.1007/978-3-319-06068-2_13Suche in Google Scholar PubMed
Corcoran, A. and Cotter, T.G. (2013). Redox regulation of protein kinases. FEBS J. 280, 1944–1965.10.1111/febs.12224Suche in Google Scholar PubMed
Crump, K.E., Juneau, D.G., Poole, L.B., Haas, K.M., and Grayson, J.M. (2012). The reversible formation of cysteine sulfenic acid promotes B-cell activation and proliferation. Eur. J. Immunol. 42, 2152–2164.10.1002/eji.201142289Suche in Google Scholar PubMed PubMed Central
Cunnick, J.M., Dorsey, J.F., Mei, L., and Wu, J. (1998). Reversible regulation of SHP-1 tyrosine phosphatase activity by oxidation. Biochem. Mol. Biol. Int. 45, 887–894.10.1002/iub.7510450506Suche in Google Scholar PubMed
Das, J., Ho, M., Zikherman, J., Govern, C., Yang, M., Weiss, A., Chakraborty, A.K., and Roose, J.P. (2009). Digital signaling and hysteresis characterize ras activation in lymphoid cells. Cell 136, 337–351.10.1016/j.cell.2008.11.051Suche in Google Scholar PubMed PubMed Central
Devadas, S., Zaritskaya, L., Rhee, S.G., Oberley, L., and Williams, M.S. (2002). Discrete generation of superoxide and hydrogen peroxide by T cell receptor stimulation: selective regulation of mitogen-activated protein kinase activation and fas ligand expression. J. Exp. Med. 195, 59–70.10.1084/jem.20010659Suche in Google Scholar PubMed PubMed Central
Doherty, E., Oaks, Z., and Perl, A. (2014). Increased mitochondrial electron transport chain activity at complex I is regulated by N-acetylcysteine in lymphocytes of patients with systemic lupus erythematosus. Antioxid. Redox Sign. 21, 56–65.10.1089/ars.2013.5702Suche in Google Scholar PubMed PubMed Central
Dornand, J. and Gerber, M. (1989). Inhibition of murine T-cell responses by anti-oxidants: the targets of lipo-oxygenase pathway inhibitors. Immunology 68, 384–391.Suche in Google Scholar
D’Oro, U., Sakaguchi, K., Appella, E., and Ashwell, J.D. (1996). Mutational analysis of Lck in CD45-negative T cells: dominant role of tyrosine 394 phosphorylation in kinase activity. Mol. Cell. Biol. 16, 4996–5003.10.1128/MCB.16.9.4996Suche in Google Scholar PubMed PubMed Central
Droge, W. (2002). Free radicals in the physiological control of cell function. Physiol. Rev. 82, 47–95.10.1152/physrev.00018.2001Suche in Google Scholar PubMed
Ermakova, Y.G., Bilan, D.S., Matlashov, M.E., Mishina, N.M., Markvicheva, K.N., Subach, O.M., Subach, F.V., Bogeski, I., Hoth, M., Enikolopov, G., et al. (2014). Red fluorescent genetically encoded indicator for intracellular hydrogen peroxide. Nat. Commun. 5, 5222.10.1038/ncomms6222Suche in Google Scholar PubMed PubMed Central
Feske, S. (2009). ORAI1 and STIM1 deficiency in human and mice: roles of store-operated Ca2+ entry in the immune system and beyond. Immunol. Rev. 231, 189–209.10.1111/j.1600-065X.2009.00818.xSuche in Google Scholar PubMed PubMed Central
Feske, S., Gwack, Y., Prakriya, M., Srikanth, S., Puppel, S.H., Tanasa, B., Hogan, P.G., Lewis, R.S., Daly, M., and Rao, A. (2006). A mutation in orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441, 179–185.10.1038/nature04702Suche in Google Scholar PubMed
Fidelus, R.K. (1988). The generation of oxygen radicals: a positive signal for lymphocyte activation. Cell. Immunol. 113, 175–182.10.1016/0008-8749(88)90015-9Suche in Google Scholar
Fidelus, R.K. and Tsan, M.F. (1986). Enhancement of intracellular glutathione promotes lymphocyte activation by mitogen. Cell. Immunol. 97, 155–163.10.1016/0008-8749(86)90385-0Suche in Google Scholar
Fidelus, R.K. and Tsan, M.F. (1987). Glutathione and lymphocyte activation: a function of ageing and auto-immune disease. Immunology 61, 503–508.Suche in Google Scholar
Fidelus, R.K., Ginouves, P., Lawrence, D., and Tsan, M.F. (1987). Modulation of intracellular glutathione concentrations alters lymphocyte activation and proliferation. Exp. Cell Res. 170, 269–275.10.1016/0014-4827(87)90305-3Suche in Google Scholar
Finkel, T. (1998). Oxygen radicals and signaling. Curr. Opin. Cell Biol. 10, 248–253.10.1016/S0955-0674(98)80147-6Suche in Google Scholar
Fratelli, M., Demol, H., Puype, M., Casagrande, S., Eberini, I., Salmona, M., Bonetto, V., Mengozzi, M., Duffieux, F., Miclet, E., et al. (2002). Identification by redox proteomics of glutathionylated proteins in oxidatively stressed human T lymphocytes. Proc. Natl. Acad. Sci. USA 99, 3505–3510.10.1073/pnas.052592699Suche in Google Scholar
Gelderman, K.A., Hultqvist, M., Pizzolla, A., Zhao, M., Nandakumar, K.S., Mattsson, R., and Holmdahl, R. (2007). Macrophages suppress T cell responses and arthritis development in mice by producing reactive oxygen species. J. Clin. Invest. 117, 3020–3028.10.1172/JCI31935Suche in Google Scholar
Gerber, M., Ball, D., Michel, F., and Crastes de Paulet, A. (1985). Mechanism of enhancing effect of irradiation on production of IL-2. Immunol. Lett. 9, 279–283.10.1016/0165-2478(85)90008-2Suche in Google Scholar
Giannoni, E. and Chiarugi, P. (2014). Redox circuitries driving src regulation. Antioxid. Redox Sign. 20, 2011–2025.10.1089/ars.2013.5525Suche in Google Scholar
Giannoni, E., Taddei, M.L., and Chiarugi, P. (2010). Src redox regulation: again in the front line. Free Rad. Biol. Med. 49, 516–527.10.1016/j.freeradbiomed.2010.04.025Suche in Google Scholar
Gil, L., Martinez, G., Gonzalez, I., Tarinas, A., Alvarez, A., Giuliani, A., Molina, R., Tapanes, R., Perez, J., and Leon, O.S. (2003). Contribution to characterization of oxidative stress in HIV/AIDS patients. Pharmacol. Res. 47, 217–224.10.1016/S1043-6618(02)00320-1Suche in Google Scholar
Gilabert, J.A. and Parekh, A.B. (2000). Respiring mitochondria determine the pattern of activation and inactivation of the store-operated Ca2+ current I (CRAC). EMBO J. 19, 6401–6407.10.1093/emboj/19.23.6401Suche in Google Scholar
Gill, T. and Levine, A.D. (2013). Mitochondria-derived hydrogen peroxide selectively enhances T cell receptor-initiated signal transduction. J. Biol. Chem. 288, 26246–26255.10.1074/jbc.M113.476895Suche in Google Scholar
Glitsch, M.D., Bakowski, D., and Parekh, A.B. (2002). Store-operated Ca2+ entry depends on mitochondrial Ca2+ uptake. EMBO J. 21, 6744–6754.10.1093/emboj/cdf675Suche in Google Scholar
Gloire, G., Legrand-Poels, S., and Piette, J. (2006). NF-κB activation by reactive oxygen species: fifteen years later. Biochem. Pharmacol. 72, 1493–1505.10.1016/j.bcp.2006.04.011Suche in Google Scholar
Gmunder, H., Roth, S., Eck, H.P., Gallas, H., Mihm, S., and Droge, W. (1990). Interleukin-2 mRNA expression, lymphokine production and DNA synthesis in glutathione-depleted T cells. Cell. Immunol. 130, 520–528.10.1016/0008-8749(90)90292-YSuche in Google Scholar
Goldsmith, M.A. and Weiss, A. (1987). Isolation and characterization of a T-lymphocyte somatic mutant with altered signal transduction by the antigen receptor. Proc. Natl. Acad. Sci. USA 84, 6879–6883.10.1073/pnas.84.19.6879Suche in Google Scholar PubMed PubMed Central
Griffith, C.E., Zhang, W., and Wange, R.L. (1998). ZAP-70-dependent and -independent activation of Erk in Jurkat T cells. Differences in signaling induced by H2O2 and CD3 cross-linking. J. Biol. Chem. 273, 10771–10776.10.1074/jbc.273.17.10771Suche in Google Scholar PubMed
Gringhuis, S.I., Leow, A., Papendrecht-Van Der Voort, E.A., Remans, P.H., Breedveld, F.C., and Verweij, C.L. (2000). Displacement of linker for activation of T cells from the plasma membrane due to redox balance alterations results in hyporesponsiveness of synovial fluid T lymphocytes in rheumatoid arthritis. J. Immunol. 164, 2170–2179.10.4049/jimmunol.164.4.2170Suche in Google Scholar PubMed
Gringhuis, S.I., Papendrecht-van der Voort, E.A., Leow, A., Nivine Levarht, E.W., Breedveld, F.C., and Verweij, C.L. (2002). Effect of redox balance alterations on cellular localization of LAT and downstream T-cell receptor signaling pathways. Mol. Cell. Biol. 22, 400–411.10.1128/MCB.22.2.400-411.2002Suche in Google Scholar PubMed PubMed Central
Gutscher, M., Pauleau, A.L., Marty, L., Brach, T., Wabnitz, G.H., Samstag, Y., Meyer, A.J., and Dick, T.P. (2008). Real-time imaging of the intracellular glutathione redox potential. Nat. Methods 5, 553–559.10.1038/nmeth.1212Suche in Google Scholar PubMed
Hehner, S.P., Breitkreutz, R., Shubinsky, G., Unsoeld, H., Schulze-Osthoff, K., Schmitz, M.L., and Droge, W. (2000). Enhancement of T cell receptor signaling by a mild oxidative shift in the intracellular thiol pool. J. Immunol. 165, 4319–4328.10.4049/jimmunol.165.8.4319Suche in Google Scholar
Herzenberg, L.A., De Rosa, S.C., Dubs, J.G., Roederer, M., Anderson, M.T., Ela, S.W., Deresinski, S.C., and Herzenberg, L.A. (1997). Glutathione deficiency is associated with impaired survival in HIV disease. Proc. Natl. Acad. Sci. USA 94, 1967–1972.10.1073/pnas.94.5.1967Suche in Google Scholar
Hildeman, D.A., Mitchell, T., Kappler, J., and Marrack, P. (2003). T cell apoptosis and reactive oxygen species. J. Clin. Invest. 111, 575–581.10.1172/JCI200318007Suche in Google Scholar
Hildeman, D.A., Mitchell, T., Teague, T.K., Henson, P., Day, B.J., Kappler, J., and Marrack, P.C. (1999). Reactive oxygen species regulate activation-induced T cell apoptosis. Immunity 10, 735–744.10.1016/S1074-7613(00)80072-2Suche in Google Scholar
Hogan, P.G., Lewis, R.S., and Rao, A. (2010). Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. Ann. Rev. Immunol. 28, 491–533.10.1146/annurev.immunol.021908.132550Suche in Google Scholar PubMed PubMed Central
Hoth, M. and Penner, R. (1992). Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355, 353–356.10.1038/355353a0Suche in Google Scholar PubMed
Hoth, M., Fanger, C.M., and Lewis, R.S. (1997). Mitochondrial regulation of store-operated calcium signaling in T lymphocytes. J. Cell Biol. 137, 633–648.10.1083/jcb.137.3.633Suche in Google Scholar PubMed PubMed Central
Hoth, M., Button, D.C., and Lewis, R.S. (2000). Mitochondrial control of calcium-channel gating: a mechanism for sustained signaling and transcriptional activation in T lymphocytes. Proc. Natl. Acad. Sci. USA 97, 10607–10612.10.1073/pnas.180143997Suche in Google Scholar PubMed PubMed Central
Hui, E. and Vale, R.D. (2014). In vitro membrane reconstitution of the T-cell receptor proximal signaling network. Nat. Struct. Mol. Biol. 21, 133–142.10.1038/nsmb.2762Suche in Google Scholar PubMed PubMed Central
Hultqvist, M., Olsson, L.M., Gelderman, K.A., and Holmdahl, R. (2009). The protective role of ROS in autoimmune disease. Trends Immunol. 30, 201–208.10.1016/j.it.2009.03.004Suche in Google Scholar PubMed
Jackson, S.H., Devadas, S., Kwon, J., Pinto, L.A., and Williams, M.S. (2004). T cells express a phagocyte-type NADPH oxidase that is activated after T cell receptor stimulation. Nat. Immunol. 5, 818–827.10.1038/ni1096Suche in Google Scholar PubMed
Jones, R.G., Bui, T., White, C., Madesh, M., Krawczyk, C.M., Lindsten, T., Hawkins, B.J., Kubek, S., Frauwirth, K.A., Wang, Y.L., et al. (2007). The proapoptotic factors Bax and Bak regulate T Cell proliferation through control of endoplasmic reticulum Ca2+ homeostasis. Immunity 27, 268–280.10.1016/j.immuni.2007.05.023Suche in Google Scholar PubMed PubMed Central
Kabe, Y., Ando, K., Hirao, S., Yoshida, M., and Handa, H. (2005). Redox regulation of NF-κB activation: distinct redox regulation between the cytoplasm and the nucleus. Antioxid. Redox Sign. 7, 395–403.10.1089/ars.2005.7.395Suche in Google Scholar PubMed
Kaminski, M., Kiessling, M., Suss, D., Krammer, P.H., and Gulow, K. (2007). Novel role for mitochondria: protein kinase Ctheta-dependent oxidative signaling organelles in activation-induced T-cell death. Mol. Cell. Biol. 27, 3625–3639.10.1128/MCB.02295-06Suche in Google Scholar PubMed PubMed Central
Kaminski, M.M., Sauer, S.W., Klemke, C.D., Suss, D., Okun, J.G., Krammer, P.H., and Gulow, K. (2010). Mitochondrial reactive oxygen species control T cell activation by regulating IL-2 and IL-4 expression: mechanism of ciprofloxacin-mediated immunosuppression. J. Immunol. 184, 4827–4841.10.4049/jimmunol.0901662Suche in Google Scholar PubMed
Kaminski, M.M., Roth, D., Sass, S., Sauer, S.W., Krammer, P.H., and Gulow, K. (2012). Manganese superoxide dismutase: a regulator of T cell activation-induced oxidative signaling and cell death. Biochim. Biophys. Acta 1823, 1041–1052.10.1016/j.bbamcr.2012.03.003Suche in Google Scholar PubMed
Kaminski, M.M., Roth, D., Krammer, P.H., and Gulow, K. (2013). Mitochondria as oxidative signaling organelles in T-cell activation: physiological role and pathological implications. Arch. Immunol. Ther. Exp. (Warsz.) 61, 367–384.10.1007/s00005-013-0235-0Suche in Google Scholar PubMed
Kanner, S.B., Kavanagh, T.J., Grossmann, A., Hu, S.L., Bolen, J.B., Rabinovitch, P.S., and Ledbetter, J.A. (1992). Sulfhydryl oxidation down-regulates T-cell signaling and inhibits tyrosine phosphorylation of phospholipase Cγ 1. Proc. Natl. Acad. Sci. USA 89, 300–304.10.1073/pnas.89.1.300Suche in Google Scholar PubMed PubMed Central
Kato, H. and Perl, A. (2014). Mechanistic target of rapamycin complex 1 expands Th17 and IL-4+ CD4-CD8- double-negative T cells and contracts regulatory T cells in systemic lupus erythematosus. J. Immunol. 192, 4134–4144.10.4049/jimmunol.1301859Suche in Google Scholar PubMed PubMed Central
Kesarwani, P., Murali, A.K., Al-Khami, A.A., and Mehrotra, S. (2013). Redox regulation of T-cell function: from molecular mechanisms to significance in human health and disease. Antioxid. Redox Sign. 18, 1497–1534.10.1089/ars.2011.4073Suche in Google Scholar PubMed PubMed Central
Kettenhofen, N.J. and Wood, M.J. (2010). Formation, reactivity, and detection of protein sulfenic acids. Chem. Res. Toxicol. 23, 1633–1646.10.1021/tx100237wSuche in Google Scholar
Klemke, M., Wabnitz, G.H., Funke, F., Funk, B., Kirchgessner, H., and Samstag, Y. (2008). Oxidation of cofilin mediates T cell hyporesponsiveness under oxidative stress conditions. Immunity 29, 404–413.10.1016/j.immuni.2008.06.016Suche in Google Scholar
Kovacic, P. and Jacintho, J.D. (2001). Mechanisms of carcinogenesis: focus on oxidative stress and electron transfer. Curr. Med. Chem. 8, 773–796.10.2174/0929867013373084Suche in Google Scholar
Kozai, D., Ogawa, N., and Mori, Y. (2014). Redox regulation of transient receptor potential channels. Antioxid. Redox Sign. 21, 971–986.10.1089/ars.2013.5616Suche in Google Scholar
Kummerow, C., Junker, C., Kruse, K., Rieger, H., Quintana, A., and Hoth, M. (2009). The immunological synapse controls local and global calcium signals in T lymphocytes. Immunol. Rev. 231, 132–147.10.1111/j.1600-065X.2009.00811.xSuche in Google Scholar
Kwon, J., Devadas, S., and Williams, M.S. (2003). T cell receptor-stimulated generation of hydrogen peroxide inhibits MEK-ERK activation and lck serine phosphorylation. Free Rad. Biol. Med. 35, 406–417.10.1016/S0891-5849(03)00318-6Suche in Google Scholar
Kwon, J., Qu, C.K., Maeng, J.S., Falahati, R., Lee, C., and Williams, M.S. (2005). Receptor-stimulated oxidation of SHP-2 promotes T-cell adhesion through SLP-76-ADAP. EMBO J. 24, 2331–2341.10.1038/sj.emboj.7600706Suche in Google Scholar
Kwon, J., Shatynski, K.E., Chen, H., Morand, S., de Deken, X., Miot, F., Leto, T.L., and Williams, M.S. (2010). The non-phagocytic NADPH oxidase Duox1 mediates a positive feedback loop during T cell receptor signaling. Sci. Sign. 3, ra59.Suche in Google Scholar
Lahdenpohja, N. and Hurme, M. (1998). CD28-mediated activation in CD45RA+ and CD45RO+ T cells: enhanced levels of reactive oxygen intermediates and c-Rel nuclear translocation in CD45RA+ cells. J. Leukoc. Biol. 63, 775–780.10.1002/jlb.63.6.775Suche in Google Scholar
Lee, K. and Esselman, W.J. (2002). Inhibition of PTPs by H2O2 regulates the activation of distinct MAPK pathways. Free Rad. Biol. Med. 33, 1121–1132.10.1016/S0891-5849(02)01000-6Suche in Google Scholar
Lee, M., Choy, W.C., and Abid, M.R. (2011). Direct sensing of endothelial oxidants by vascular endothelial growth factor receptor-2 and c-Src. PLoS One 6, e28454.10.1371/journal.pone.0028454Suche in Google Scholar PubMed PubMed Central
Leonard, S.E., Reddie, K.G., and Carroll, K.S. (2009). Mining the thiol proteome for sulfenic acid modifications reveals new targets for oxidation in cells. ACS Chem. Biol. 4, 783–799.10.1021/cb900105qSuche in Google Scholar PubMed
Lin, X. and Wang, D. (2004). The roles of CARMA1, Bcl10, and MALT1 in antigen receptor signaling. Semin. Immunol. 16, 429–435.10.1016/j.smim.2004.08.022Suche in Google Scholar PubMed
Lindemann, C. and Leichert, L.I. (2012). Quantitative redox proteomics: the NOxICAT method. Methods Mol. Biol. 893, 387–403.10.1007/978-1-61779-885-6_24Suche in Google Scholar PubMed
Liou, J., Kim, M.L., Heo, W.D., Jones, J.T., Myers, J.W., Ferrell, J.E., Jr., and Meyer, T. (2005). STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr. Biol. 15, 1235–1241.10.1016/j.cub.2005.05.055Suche in Google Scholar PubMed PubMed Central
Lis, A., Peinelt, C., Beck, A., Parvez, S., Monteilh-Zoller, M., Fleig, A., and Penner, R. (2007). CRACM1, CRACM2, and CRACM3 are store-operated Ca2+ channels with distinct functional properties. Curr. Biol. 17, 794–800.10.1016/j.cub.2007.03.065Suche in Google Scholar PubMed PubMed Central
Los, M., Droge, W., Stricker, K., Baeuerle, P.A., and Schulze-Osthoff, K. (1995a). Hydrogen peroxide as a potent activator of T lymphocyte functions. Eur. J. Immunol. 25, 159–165.10.1002/eji.1830250127Suche in Google Scholar PubMed
Los, M., Schenk, H., Hexel, K., Baeuerle, P.A., Droge, W., and Schulze-Osthoff, K. (1995b). IL-2 gene expression and NF-κB activation through CD28 requires reactive oxygen production by 5-lipoxygenase. EMBO J. 14, 3731–3740.10.1002/j.1460-2075.1995.tb00043.xSuche in Google Scholar PubMed PubMed Central
Lu, S.P., Lin Feng, M.H., Huang, H.L., Huang, Y.C., Tsou, W.I., and Lai, M.Z. (2007). Reactive oxygen species promote raft formation in T lymphocytes. Free Rad. Biol. Med. 42, 936–944.10.1016/j.freeradbiomed.2006.11.027Suche in Google Scholar PubMed
Meyer, A.J. and Dick, T.P. (2010). Fluorescent protein-based redox probes. Antioxid. Redox Sign. 13, 621–650.10.1089/ars.2009.2948Suche in Google Scholar PubMed
Michalek, R.D., Nelson, K.J., Holbrook, B.C., Yi, J.S., Stridiron, D., Daniel, L.W., Fetrow, J.S., King, S.B., Poole, L.B., and Grayson, J.M. (2007). The requirement of reversible cysteine sulfenic acid formation for T cell activation and function. J. Immunol. 179, 6456–6467.10.4049/jimmunol.179.10.6456Suche in Google Scholar PubMed
Mishina, N.M., Bogeski, I., Bolotin, D.A., Hoth, M., Niemeyer, B.A., Schultz, C., Zagaynova, E.V., Lukyanov, S., and Belousov, V.V. (2012). Can we see PIP3 and hydrogen peroxide with a single probe? Antioxid. Redox Sign. 17, 505–512.Suche in Google Scholar
Molina, T.J., Kishihara, K., Siderovski, D.P., van Ewijk, W., Narendran, A., Timms, E., Wakeham, A., Paige, C.J., Hartmann, K.U., Veillette, A., et al. (1992). Profound block in thymocyte development in mice lacking p56lck. Nature 357, 161–164.10.1038/357161a0Suche in Google Scholar PubMed
Murphy, M.P. (2009). How mitochondria produce reactive oxygen species. Biochem. J. 417, 1–13.10.1042/BJ20081386Suche in Google Scholar PubMed PubMed Central
Murphy, M.P. and Siegel, R.M. (2013). Mitochondrial ROS fire up T cell activation. Immunity 38, 201–202.10.1016/j.immuni.2013.02.005Suche in Google Scholar PubMed
Mustelin, T., Vang, T., and Bottini, N. (2005). Protein tyrosine phosphatases and the immune response. Nat. Rev. Immunol. 5, 43–57.10.1038/nri1530Suche in Google Scholar PubMed
Nakamura, K., Hori, T., Sato, N., Sugie, K., Kawakami, T., and Yodoi, J. (1993). Redox regulation of a src family protein tyrosine kinase p56lck in T cells. Oncogene 8, 3133–3139.Suche in Google Scholar
Negishi, I., Motoyama, N., Nakayama, K., Nakayama, K., Senju, S., Hatakeyama, S., Zhang, Q., Chan, A.C., and Loh, D.Y. (1995). Essential role for ZAP-70 in both positive and negative selection of thymocytes. Nature 376, 435–438.10.1038/376435a0Suche in Google Scholar PubMed
Novogrodsky, A., Ravid, A., Rubin, A.L., and Stenzel, K.H. (1982). Hydroxyl radical scavengers inhibit lymphocyte mitogenesis. Proc. Natl. Acad. Sci. USA 79, 1171–1174.10.1073/pnas.79.4.1171Suche in Google Scholar PubMed PubMed Central
Nunes, P. and Demaurex, N. (2014). Redox regulation of store-operated Ca2+ entry. Antioxid. Redox Sign. 21, 915–932.10.1089/ars.2013.5615Suche in Google Scholar PubMed PubMed Central
Ortona, E., Maselli, A., Delunardo, F., Colasanti, T., Giovannetti, A., and Pierdominici, M. (2014). Relationship between redox status and cell fate in immunity and autoimmunity. Antioxid. Redox Sign. 21, 103–122.10.1089/ars.2013.5752Suche in Google Scholar PubMed
O-Uchi, J., Jhun, B.S., Xu, S., Hurst, S., Raffaello, A., Liu, X., Yi, B., Zhang, H., Gross, P., Mishra, J., et al. (2014a). Adrenergic signaling regulates mitochondrial Ca2+ uptake through Pyk2-dependent tyrosine phosphorylation of the mitochondrial Ca2+ uniporter. Antioxid. Redox Sign. 21, 863–879.10.1089/ars.2013.5394Suche in Google Scholar PubMed PubMed Central
O-Uchi, J., Ryu, S.Y., Jhun, B.S., Hurst, S., and Sheu, S.S. (2014b). Mitochondrial ion channels/transporters as sensors and regulators of cellular redox signaling. Antioxid. Redox Sign. 21, 987–1006.10.1089/ars.2013.5681Suche in Google Scholar PubMed PubMed Central
Padgett, L.E., Broniowska, K.A., Hansen, P.A., Corbett, J.A., and Tse, H.M. (2013). The role of reactive oxygen species and proinflammatory cytokines in type 1 diabetes pathogenesis. Ann. NY Acad. Sci. 1281, 16–35.10.1111/j.1749-6632.2012.06826.xSuche in Google Scholar PubMed PubMed Central
Pani, G., Fischer, K.D., Mlinaric-Rascan, I., and Siminovitch, K.A. (1996). Signaling capacity of the T cell antigen receptor is negatively regulated by the PTP1C tyrosine phosphatase. J. Exp. Med. 184, 839–852.10.1084/jem.184.3.839Suche in Google Scholar PubMed PubMed Central
Pani, G., Colavitti, R., Borrello, S., and Galeotti, T. (2000). Endogenous oxygen radicals modulate protein tyrosine phosphorylation and JNK-1 activation in lectin-stimulated thymocytes. Biochem. J. 347, 173–181.10.1042/bj3470173Suche in Google Scholar
Parekh, A.B. (2003). Store-operated Ca2+ entry: dynamic interplay between endoplasmic reticulum, mitochondria and plasma membrane. J. Physiol. 547, 333–348.10.1113/jphysiol.2002.034140Suche in Google Scholar PubMed PubMed Central
Parekh, A.B. and Putney, J.W., Jr. (2005). Store-operated calcium channels. Physiol. Rev. 85, 757–810.10.1152/physrev.00057.2003Suche in Google Scholar PubMed
Patterson, D.A., Rapoport, R., Patterson, M.A., Freed, B.M., and Lempert, N. (1988). Hydrogen peroxide-mediated inhibition of T-cell response to mitogens is a result of direct action on T cells. Arch. Surg. 123, 300–304.10.1001/archsurg.1988.01400270034004Suche in Google Scholar PubMed
Paula-Lima, A.C., Adasme, T., and Hidalgo, C. (2014). Contribution of Ca2+ release channels to hippocampal synaptic plasticity and spatial memory: potential redox modulation. Antioxid. Redox Sign. 21, 892–914.10.1089/ars.2013.5796Suche in Google Scholar PubMed
Paulsen, C.E., Truong, T.H., Garcia, F.J., Homann, A., Gupta, V., Leonard, S.E., and Carroll, K.S. (2012). Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity. Nat. Chem. Biol. 8, 57–64.10.1038/nchembio.736Suche in Google Scholar PubMed PubMed Central
Peralta, D., Bronowska, A.K., Morgan, B., Doka, E., Van Laer, K., Nagy, P., Grater, F., and Dick, T.P. (2015). A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation. Nat. Chem. Biol. 11, 156–163.10.1038/nchembio.1720Suche in Google Scholar PubMed
Perl, A. (2013). Oxidative stress in the pathology and treatment of systemic lupus erythematosus. Nat. Rev. Rheumatol. 9, 674–686.10.1038/nrrheum.2013.147Suche in Google Scholar PubMed PubMed Central
Pillay, J., Kamp, V.M., van Hoffen, E., Visser, T., Tak, T., Lammers, J.W., Ulfman, L.H., Leenen, L.P., Pickkers, P., and Koenderman, L. (2012). A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1. J. Clin. Invest. 122, 327–336.10.1172/JCI57990Suche in Google Scholar
Poltorak, M., Meinert, I., Stone, J.C., Schraven, B., and Simeoni, L. (2014). Sos1 regulates sustained TCR-mediated Erk activation. Eur. J. Immunol. 44, 1535–1540.10.1002/eji.201344046Suche in Google Scholar
Poole, L.B. (2008). Measurement of protein sulfenic acid content. Current protocols in toxicology/editorial board, Mahin D Maines Chapter 17, Unit17 12.10.1002/0471140856.tx1702s38Suche in Google Scholar
Quintana, A. and Hoth, M. (2012). Mitochondrial dynamics and their impact on T cell function. Cell Calc. 52, 57–63.10.1016/j.ceca.2012.02.005Suche in Google Scholar
Quintana, A., Pasche, M., Junker, C., Al-Ansary, D., Rieger, H., Kummerow, C., Nunez, L., Villalobos, C., Meraner, P., Becherer, U., et al. (2011). Calcium microdomains at the immunological synapse: how ORAI channels, mitochondria and calcium pumps generate local calcium signals for efficient T-cell activation. EMBO J. 30, 3895–3912.10.1038/emboj.2011.289Suche in Google Scholar
Quintana, A., Schwindling, C., Wenning, A.S., Becherer, U., Rettig, J., Schwarz, E.C., and Hoth, M. (2007). T cell activation requires mitochondrial translocation to the immunological synapse. Proc. Natl. Acad. Sci. USA 104, 14418–14423.10.1073/pnas.0703126104Suche in Google Scholar
Rao, A. (1994). NF-ATp: a transcription factor required for the co-ordinate induction of several cytokine genes. Immunol. Today 15, 274–281.10.1016/0167-5699(94)90007-8Suche in Google Scholar
Remans, P.H., Gringhuis, S.I., van Laar, J.M., Sanders, M.E., Papendrecht-van der Voort, E.A., Zwartkruis, F.J., Levarht, E.W., Rosas, M., Coffer, P.J., Breedveld, F.C., et al. (2004). Rap1 signaling is required for suppression of Ras-generated reactive oxygen species and protection against oxidative stress in T lymphocytes. J. Immunol. 173, 920–931.10.4049/jimmunol.173.2.920Suche in Google Scholar PubMed
Reth, M. (2002). Hydrogen peroxide as second messenger in lymphocyte activation. Nat. Immunol. 3, 1129–1134.10.1038/ni1202-1129Suche in Google Scholar PubMed
Reyes, B.M., Danese, S., Sans, M., Fiocchi, C., and Levine, A.D. (2005). Redox equilibrium in mucosal T cells tunes the intestinal TCR signaling threshold. J. Immunol. 175, 2158–2166.10.4049/jimmunol.175.4.2158Suche in Google Scholar PubMed
Rolli, V., Gallwitz, M., Wossning, T., Flemming, A., Schamel, W.W., Zurn, C., and Reth, M. (2002). Amplification of B cell antigen receptor signaling by a Syk/ITAM positive feedback loop. Mol. Cell 10, 1057–1069.10.1016/S1097-2765(02)00739-6Suche in Google Scholar
Roose, J. and Weiss, A. (2000). T cells: getting a GRP on Ras. Nat. Immunol. 1, 275–276.10.1038/79713Suche in Google Scholar
Roose, J.P., Mollenauer, M., Ho, M., Kurosaki, T., and Weiss, A. (2007). Unusual interplay of two types of Ras activators, RasGRP and SOS, establishes sensitive and robust Ras activation in lymphocytes. Mol. Cell. Biol. 27, 2732–2745.10.1128/MCB.01882-06Suche in Google Scholar
Roth, S. and Droge, W. (1987). Regulation of T-cell activation and T-cell growth factor (TCGF) production by hydrogen peroxide. Cell. Immunol. 108, 417–424.10.1016/0008-8749(87)90224-3Suche in Google Scholar
Roth, S. and Droge, W. (1991). Regulation of interleukin 2 production, interleukin 2 mRNA expression and intracellular glutathione levels in ex vivo derived T lymphocytes by lactate. European J. Immunol. 21, 1933–1937.10.1002/eji.1830210823Suche in Google Scholar
Sahoo, N., Hoshi, T., and Heinemann, S.H. (2014). Oxidative modulation of voltage-gated potassium channels. Antioxid. Redox Sign. 21, 933–952.10.1089/ars.2013.5614Suche in Google Scholar
Samelson, L.E. (2011). Immunoreceptor signaling. Cold Spring Harb. Perspect. Biol. 3, pii: a011510.Suche in Google Scholar
Samstag, Y., John, I., and Wabnitz, G.H. (2013). Cofilin: a redox sensitive mediator of actin dynamics during T-cell activation and migration. Immunol. Rev. 256, 30–47.10.1111/imr.12115Suche in Google Scholar
Santo-Domingo, J. and Demaurex, N. (2010). Calcium uptake mechanisms of mitochondria. Biochim. Biophys. Acta 1797, 907–912.10.1016/j.bbabio.2010.01.005Suche in Google Scholar
Schindl, R., Frischauf, I., Bergsmann, J., Muik, M., Derler, I., Lackner, B., Groschner, K., and Romanin, C. (2009). Plasticity in Ca2+ selectivity of Orai1/Orai3 heteromeric channel. Proc. Natl. Acad. Sci. USA 106, 19623–19628.10.1073/pnas.0907714106Suche in Google Scholar
Secrist, J.P., Burns, L.A., Karnitz, L., Koretzky, G.A., and Abraham, R.T. (1993). Stimulatory effects of the protein tyrosine phosphatase inhibitor, pervanadate, on T-cell activation events. J. Biol. Chem. 268, 5886–5893.10.1016/S0021-9258(18)53403-7Suche in Google Scholar
Sekkat, C., Dornand, J., and Gerber, M. (1988). Oxidative phenomena are implicated in human T-cell stimulation. Immunology 63, 431–437.Suche in Google Scholar
Sena, L.A. and Chandel, N.S. (2012). Physiological roles of mitochondrial reactive oxygen species. Mol. Cell 48, 158–167.10.1016/j.molcel.2012.09.025Suche in Google Scholar
Sena, L.A., Li, S., Jairaman, A., Prakriya, M., Ezponda, T., Hildeman, D.A., Wang, C.R., Schumacker, P.T., Licht, J.D., Perlman, H., et al. (2013). Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 38, 225–236.10.1016/j.immuni.2012.10.020Suche in Google Scholar
Seo, Y.H. and Carroll, K.S. (2009). Profiling protein thiol oxidation in tumor cells using sulfenic acid-specific antibodies. Proc. Natl. Acad. Sci. USA 106, 16163–16168.10.1073/pnas.0903015106Suche in Google Scholar
Sies, H. (2014). Role of metabolic H2O2 generation: redox signaling and oxidative stress. J. Biol. Chem. 289, 8735–8741.10.1074/jbc.R113.544635Suche in Google Scholar
Silic-Benussi, M., Cavallari, I., Vajente, N., Vidali, S., Chieco-Bianchi, L., Di Lisa, F., Saggioro, D., D’Agostino, D.M., and Ciminale, V. (2010). Redox regulation of T-cell turnover by the p13 protein of human T-cell leukemia virus type 1: distinct effects in primary versus transformed cells. Blood 116, 54–62.10.1182/blood-2009-07-235861Suche in Google Scholar
Smith-Garvin, J.E., Koretzky, G.A., and Jordan, M.S. (2009). T cell activation. Ann. Rev. Immunol. 27, 591–619.10.1146/annurev.immunol.021908.132706Suche in Google Scholar
Smyth, M.J. (1991). Glutathione modulates activation-dependent proliferation of human peripheral blood lymphocyte populations without regulating their activated function. J. Immunol. 146, 1921–1927.10.4049/jimmunol.146.6.1921Suche in Google Scholar
Staal, F.J., Ela, S.W., Roederer, M., Anderson, M.T., Herzenberg, L.A., and Herzenberg, L.A. (1992). Glutathione deficiency and human immunodeficiency virus infection. Lancet 339, 909–912.10.1016/0140-6736(92)90939-ZSuche in Google Scholar
Stefanova, I., Saville, M.W., Peters, C., Cleghorn, F.R., Schwartz, D., Venzon, D.J., Weinhold, K.J., Jack, N., Bartholomew, C., Blattner, W.A., et al. (1996). HIV infection-induced posttranslational modification of T cell signaling molecules associated with disease progression. J. Clin. Invest. 98, 1290–1297.10.1172/JCI118915Suche in Google Scholar PubMed PubMed Central
Stojilkovic, S.S., Leiva-Salcedo, E., Rokic, M.B., and Coddou, C. (2014). Regulation of ATP-gated P2X channels: from redox signaling to interactions with other proteins. Antioxid. Redox Sign. 21, 953–970.10.1089/ars.2013.5549Suche in Google Scholar PubMed PubMed Central
Suthanthiran, M., Anderson, M.E., Sharma, V.K., and Meister, A. (1990). Glutathione regulates activation-dependent DNA synthesis in highly purified normal human T lymphocytes stimulated via the CD2 and CD3 antigens. Proc. Natl. Acad. Sci. USA 87, 3343–3347.10.1073/pnas.87.9.3343Suche in Google Scholar PubMed PubMed Central
Takahashi, N., Kozai, D., Kobayashi, R., Ebert, M., and Mori, Y. (2011). Roles of TRPM2 in oxidative stress. Cell Calcium 50, 279–287.10.1016/j.ceca.2011.04.006Suche in Google Scholar
Tatla, S., Woodhead, V., Foreman, J.C., and Chain, B.M. (1999). The role of reactive oxygen species in triggering proliferation and IL-2 secretion in T cells. Free Rad. Biol. Med. 26, 14–24.10.1016/S0891-5849(98)00133-6Suche in Google Scholar
Todorovic, S.M. and Jevtovic-Todorovic, V. (2014). Redox regulation of neuronal voltage-gated calcium channels. Antioxid. Redox Sign. 21, 880–891.10.1089/ars.2013.5610Suche in Google Scholar
Trevillyan, J.M., Chiou, X.G., Ballaron, S.J., Tang, Q.M., Buko, A., Sheets, M.P., Smith, M.L., Putman, C.B., Wiedeman, P., Tu, N., et al. (1999). Inhibition of p56(lck) tyrosine kinase by isothiazolones. Arch. Biochem. Biophys. 364, 19–29.10.1006/abbi.1999.1099Suche in Google Scholar
Tripathi, P. and Hildeman, D. (2004). Sensitization of T cells to apoptosis – a role for ROS? Apoptosis 9, 515–523.10.1023/B:APPT.0000038033.14925.02Suche in Google Scholar
Tsui, H.W., Siminovitch, K.A., de Souza, L., and Tsui, F.W. (1993). Motheaten and viable motheaten mice have mutations in the haematopoietic cell phosphatase gene. Nat. Genet. 4, 124–129.10.1038/ng0693-124Suche in Google Scholar
Ueda, S., Masutani, H., Nakamura, H., Tanaka, T., Ueno, M., and Yodoi, J. (2002). Redox control of cell death. Antioxid. Redox Sign. 4, 405–414.10.1089/15230860260196209Suche in Google Scholar
Unkeless, J.C. and Jin, J. (1997). Inhibitory receptors, ITIM sequences and phosphatases. Curr. Opin. Immunol. 9, 338–343.10.1016/S0952-7915(97)80079-9Suche in Google Scholar
Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T., Mazur, M., and Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. J. Biochem. Cell Biol. 39, 44–84.10.1016/j.biocel.2006.07.001Suche in Google Scholar
Veillette, A., Dumont, S., and Fournel, M. (1993). Conserved cysteine residues are critical for the enzymatic function of the lymphocyte-specific tyrosine protein kinase p56lck. J. Biol. Chem. 268, 17547–17553.10.1016/S0021-9258(19)85367-XSuche in Google Scholar
Visperas, P.R., Winger, J.A., Horton, T.M., Shah, N.H., Aum, D.J., Tao, A., Barros, T., Yan, Q., Wilson, C.G., Arkin, M.R., et al. (2015). Modification by covalent reaction or oxidation of cysteine residues in the tandem-SH2 Domains of ZAP-70 and Syk can block phosphopeptide binding. Biochem. J. 465, 149–161.10.1042/BJ20140793Suche in Google Scholar PubMed PubMed Central
Wang, H., Kadlecek, T.A., Au-Yeung, B.B., Goodfellow, H.E., Hsu, L.Y., Freedman, T.S., and Weiss, A. (2010). ZAP-70: an essential kinase in T-cell signaling. Cold Spring Harb. Perspect. Biol. 2, a002279.10.1101/cshperspect.a002279Suche in Google Scholar PubMed PubMed Central
Wange, R.L. (2000). LAT, the linker for activation of T cells: a bridge between T cell-specific and general signaling pathways. Sci. STKE. 2000, re1.10.1126/stke.2000.63.re1Suche in Google Scholar PubMed
Warnecke, N., Poltorak, M., Kowtharapu, B.S., Arndt, B., Stone, J.C., Schraven, B., and Simeoni, L. (2012). TCR-mediated Erk activation does not depend on Sos and Grb2 in peripheral human T cells. EMBO Rep. 13, 386–391.10.1038/embor.2012.17Suche in Google Scholar PubMed PubMed Central
Williams, B.L., Schreiber, K.L., Zhang, W., Wange, R.L., Samelson, L.E., Leibson, P.J., and Abraham, R.T. (1998). Genetic evidence for differential coupling of Syk family kinases to the T-cell receptor: reconstitution studies in a ZAP-70-deficient Jurkat T-cell line. Mol. Cell. Biol. 18, 1388–1399.10.1128/MCB.18.3.1388Suche in Google Scholar PubMed PubMed Central
Williams, M.S. and Kwon, J. (2004). T cell receptor stimulation, reactive oxygen species, and cell signaling. Free Rad. Biol. Med. 37, 1144–1151.10.1016/j.freeradbiomed.2004.05.029Suche in Google Scholar PubMed
Yoo, S.K., Starnes, T.W., Deng, Q., and Huttenlocher, A. (2011). Lyn is a redox sensor that mediates leukocyte wound attraction in vivo. Nature 480, 109–112.10.1038/nature10632Suche in Google Scholar PubMed PubMed Central
Zhang, S.L., Yu, Y., Roos, J., Kozak, J.A., Deerinck, T.J., Ellisman, M.H., Stauderman, K.A., and Cahalan, M.D. (2005). STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437, 902–905.10.1038/nature04147Suche in Google Scholar PubMed PubMed Central
Zorov, D.B., Juhaszova, M., and Sollott, S.J. (2014). Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 94, 909–950.10.1152/physrev.00026.2013Suche in Google Scholar PubMed PubMed Central
©2015 by De Gruyter
Artikel in diesem Heft
- Frontmatter
- Guest Editorial
- Highlight: Dynamics of Thiol-Based Redox Switches
- Highlight: Dynamics of Thiol-based Redox Switches
- Incidence and physiological relevance of protein thiol switches
- Enzymatic control of cysteinyl thiol switches in proteins
- Thiol-based redox switches in prokaryotes
- Detection of thiol-based redox switch processes in parasites – facts and future
- Thiol switches in mitochondria: operation and physiological relevance
- Thiol switches in redox regulation of chloroplasts: balancing redox state, metabolism and oxidative stress
- Plant-specific CC-type glutaredoxins: functions in developmental processes and stress responses
- Redox imaging using genetically encoded redox indicators in zebrafish and mice
- Cytosolic thiol switches regulating basic cellular functions: GAPDH as an information hub?
- Redox diversity in ERAD-mediated protein retrotranslocation from the endoplasmic reticulum: a complex puzzle
- Redox regulation of T-cell receptor signaling
Artikel in diesem Heft
- Frontmatter
- Guest Editorial
- Highlight: Dynamics of Thiol-Based Redox Switches
- Highlight: Dynamics of Thiol-based Redox Switches
- Incidence and physiological relevance of protein thiol switches
- Enzymatic control of cysteinyl thiol switches in proteins
- Thiol-based redox switches in prokaryotes
- Detection of thiol-based redox switch processes in parasites – facts and future
- Thiol switches in mitochondria: operation and physiological relevance
- Thiol switches in redox regulation of chloroplasts: balancing redox state, metabolism and oxidative stress
- Plant-specific CC-type glutaredoxins: functions in developmental processes and stress responses
- Redox imaging using genetically encoded redox indicators in zebrafish and mice
- Cytosolic thiol switches regulating basic cellular functions: GAPDH as an information hub?
- Redox diversity in ERAD-mediated protein retrotranslocation from the endoplasmic reticulum: a complex puzzle
- Redox regulation of T-cell receptor signaling