Abstract
A cancer dogma states that inactivation of oncogene(s) can cause cancer remission, implying that oncogenes are the Achilles’ heel of cancers. This current model of cancer has kept oncogenes firmly in focus as therapeutic targets and is in agreement with the fact that in human cancers all cancerous cells, with independence of the cellular heterogeneity existing within the tumour, carry the same oncogenic genetic lesions. However, recent studies of the interactions between an oncogene and its target cell have shown that oncogenes contribute to cancer development via developmental reprogramming of the epigenome within the target cell. These results provide the first evidence that carcinogenesis can be initiated by epigenetic stem cell reprogramming, and uncover a new role for oncogenes in the origin of cancer. Here we analyse these evidences and discuss how this vision offers new avenues for developing novel anti-cancer interventions.
Acknowledgments
We are indebted to all members of Lab 13 at IBMCC for useful discussions and for his critical reading of the original manuscript. Research in our group is partially supported by FEDER and by MICINN (SAF2012-32810), by NIH grant (R01 CA109335-04A1), by the ARIMMORA project (FP7-ENV-2011, European Union Seventh Framework Program), by Junta de Castilla y Leon (BIO/SA06/13), and by the Deutsche José Carreras Leukämie-Stiftung (DJCLS project 13/26). All Spanish funding is co-sponsored by the European Union FEDER program. ISG is an API lab of the EuroSyStem project and a partner within the Marie Curie Initial Training Network DECIDE (Decision-making within cells and differentiation entity therapies) funded by the European Union’s Seventh Programme under grant agreement n° 315902.
References
Banito, A., Rashid, S.T., Acosta, J.C., Li, S., Pereira, C.F., Geti, I., Pinho, S., Silva, J.C., Azuara, V., Walsh, M., et al. (2009). Senescence impairs successful reprogramming to pluripotent stem cells. Genes Dev. 23, 2134–2139.10.1101/gad.1811609Search in Google Scholar PubMed PubMed Central
Boxer, R.B., Jang, J.W., Sintasath, L., and Chodosh, L.A. (2004). Lack of sustained regression of c-MYC-induced mammary adenocarcinomas following brief or prolonged MYC inactivation. Cancer Cell 6, 577–586.10.1016/j.ccr.2004.10.013Search in Google Scholar PubMed
Corbin, A.S., Agarwal, A., Loriaux, M., Cortes, J., Deininger, M.W., and Druker, B.J. (2011). Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J. Clin. Invest. 121, 396–409.10.1172/JCI35721Search in Google Scholar PubMed PubMed Central
Chabner, B.A. and Roberts, T.G., Jr. (2005). Timeline: chemotherapy and the war on cancer. Nat. Rev. Cancer 5, 65–72.10.1038/nrc1529Search in Google Scholar PubMed
Chin, L., Tam, A., Pomerantz, J., Wong, M., Holash, J., Bardeesy, N., Shen, Q., O’Hagan, R., Pantginis, J., Zhou, H., et al. (1999). Essential role for oncogenic Ras in tumour maintenance. Nature 400, 468–472.10.1038/22788Search in Google Scholar PubMed
Chomel, J.C., Bonnet, M.L., Sorel, N., Bertrand, A., Meunier, M.C., Fichelson, S., Melkus, M., Bennaceur-Griscelli, A., Guilhot, F., and Turhan, A.G. (2011). Leukemic stem cell persistence in chronic myeloid leukemia patients with sustained undetectable molecular residual disease. Blood 118, 3657–3660.10.1182/blood-2011-02-335497Search in Google Scholar PubMed PubMed Central
Chu, S., McDonald, T., Lin, A., Chakraborty, S., Huang, Q., Snyder, D.S., and Bhatia, R. (2011). Persistence of leukemia stem cells in chronic myelogenous leukemia patients in prolonged remission with imatinib treatment. Blood 118, 5565–5572.10.1182/blood-2010-12-327437Search in Google Scholar PubMed PubMed Central
Etzioni, R., Urban, N., Ramsey, S., McIntosh, M., Schwartz, S., Reid, B., Radich, J., Anderson, G., and Hartwell, L. (2003). The case for early detection. Nat. Rev. Cancer 3, 243–252.10.1038/nrc1041Search in Google Scholar PubMed
Feinberg, A.P., Ohlsson, R., and Henikoff, S. (2006). The epigenetic progenitor origin of human cancer. Nature Rev. Genet. 7, 21–33.10.1038/nrg1748Search in Google Scholar PubMed
Hamilton, A., Helgason, G.V., Schemionek, M., Zhang, B., Myssina, S., Allan, E.K., Nicolini, F.E., Muller-Tidow, C., Bhatia, R., Brunton, V.G., et al. (2012). Chronic myeloid leukemia stem cells are not dependent on Bcr-Abl kinase activity for their survival. Blood 119, 1501–1510.10.1182/blood-2010-12-326843Search in Google Scholar PubMed PubMed Central
Hanahan, D. and Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646–674.10.1016/j.cell.2011.02.013Search in Google Scholar PubMed
Hong, H., Takahashi, K., Ichisaka, T., Aoi, T., Kanagawa, O., Nakagawa, M., Okita, K., and Yamanaka, S. (2009). Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature 460, 1132–1135.10.1038/nature08235Search in Google Scholar PubMed PubMed Central
Huettner, C.S., Zhang, P., Van Etten, R.A., and Tenen, D.G. (2000). Reversibility of acute B-cell leukaemia induced by BCR-ABL1. Nat. Genet. 24, 57–60.10.1038/71691Search in Google Scholar PubMed
Huff, C.A., Matsui, W., Smith, B.D., and Jones, R.J. (2006). The paradox of response and survival in cancer therapeutics. Blood 107, 431–434.10.1182/blood-2005-06-2517Search in Google Scholar PubMed PubMed Central
Iacobuzio-Donahue, C.A. (2009). Epigenetic changes in cancer. Annu. Rev. Pathol. 4, 229–249.10.1146/annurev.pathol.3.121806.151442Search in Google Scholar PubMed
Kawamura, T., Suzuki, J., Wang, Y.V., Menendez, S., Morera, L.B., Raya, A., Wahl, G.M., and Izpisua Belmonte, J.C. (2009). Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460, 1140–1144.10.1038/nature08311Search in Google Scholar PubMed PubMed Central
Koeffler, H.P. and Golde, D.W. (1981a). Chronic myelogenous leukemia – new concepts (first of two parts). N. Engl. J. Med. 304, 1201–1209.10.1056/NEJM198105143042004Search in Google Scholar PubMed
Koeffler, H.P. and Golde, D.W. (1981b). Chronic myelogenous leukemia – new concepts (second of two parts). N. Engl. J. Med. 304, 1269–1274.10.1056/NEJM198105213042105Search in Google Scholar PubMed
Krizhanovsky, V. and Lowe, S.W. (2009). Stem cells: the promises and perils of p53. Nature 460, 1085–1086.10.1038/4601085aSearch in Google Scholar PubMed PubMed Central
Kumari, A., Brendel, C., Hochhaus, A., Neubauer, A., and Burchert, A. (2012). Low BCR-ABL expression levels in hematopoietic precursor cells enable persistence of chronic myeloid leukemia under imatinib. Blood 119, 530–539.10.1182/blood-2010-08-303495Search in Google Scholar PubMed
Li, H., Collado, M., Villasante, A., Strati, K., Ortega, S., Canamero, M., Blasco, M.A., and Serrano, M. (2009). The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature 460, 1136–1139.10.1038/nature08290Search in Google Scholar PubMed PubMed Central
Marion, R.M., Strati, K., Li, H., Murga, M., Blanco, R., Ortega, S., Fernandez-Capetillo, O., Serrano, M., and Blasco, M.A. (2009). A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 460, 1149–1153.10.1038/nature08287Search in Google Scholar PubMed PubMed Central
Melo, J.V. and Barnes, D.J. (2007). Chronic myeloid leukaemia as a model of disease evolution in human cancer. Nat. Rev. Cancer 7, 441–453.10.1038/nrc2147Search in Google Scholar PubMed
Pardal, R., Clarke, M.F., and Morrison, S.J. (2003). Applying the principles of stem-cell biology to cancer. Nat. Rev. Cancer 3, 895–902.10.1038/nrc1232Search in Google Scholar PubMed
Perez-Caro, M., Cobaleda, C., Gonzalez-Herrero, I., Vicente-Duenas, C., Bermejo-Rodriguez, C., Sanchez-Beato, M., Orfao, A., Pintado, B., Flores, T., Sanchez-Martin, M., et al. (2009). Cancer induction by restriction of oncogene expression to the stem cell compartment. EMBO J. 28, 8–20.10.1038/emboj.2008.253Search in Google Scholar PubMed PubMed Central
Perez-Losada, J. and Balmain, A. (2003). Stem-cell hierarchy in skin cancer. Nat. Rev. Cancer 3, 434–443.10.1038/nrc1095Search in Google Scholar PubMed
Reya, T., Morrison, S.J., Clarke, M.F., and Weissman, I.L. (2001). Stem cells, cancer, and cancer stem cells. Nature 414, 105–111.10.1038/35102167Search in Google Scholar PubMed
Romero-Camarero, I., Jiang, X., Natkunam, Y., Lu, X., Vicente-Duenas, C., Gonzalez-Herrero, I., Flores, T., Luis Garcia, J., McNamara, G., Kunder, C., et al. (2013). Germinal centre protein HGAL promotes lymphoid hyperplasia and amyloidosis via BCR-mediated Syk activation. Nature Commun. 4, 1338.10.1038/ncomms2334Search in Google Scholar PubMed PubMed Central
Utikal, J., Polo, J.M., Stadtfeld, M., Maherali, N., Kulalert, W., Walsh, R.M., Khalil, A., Rheinwald, J.G., and Hochedlinger, K. (2009). Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature 460, 1145–1148.10.1038/nature08285Search in Google Scholar PubMed PubMed Central
Velasco-Hernandez, T., Vicente-Duenas, C., Sanchez-Garcia, I., and Martin-Zanca, D. (2012). p53 restoration kills primitive leukemia cells in vivo and increases survival of leukemic mice. Cell Cycle 12, 122–132.10.4161/cc.23031Search in Google Scholar PubMed PubMed Central
Vicente-Duenas, C., Fontan, L., Gonzalez-Herrero, I., Romero-Camarero, I., Segura, V., Aznar, M.A., Alonso-Escudero, E., Campos-Sanchez, E., Ruiz-Roca, L., Barajas-Diego, M., et al. (2012a). Expression of MALT1 oncogene in hematopoietic stem/progenitor cells recapitulates the pathogenesis of human lymphoma in mice. Proc. Natl. Acad. Sci. USA 109, 10534–10539.10.1073/pnas.1204127109Search in Google Scholar PubMed PubMed Central
Vicente-Duenas, C., Gonzalez-Herrero, I., Cenador, M.B., Criado, F.J., and Sanchez-Garcia, I. (2012b). Loss of p53 exacerbates multiple myeloma phenotype by facilitating the reprogramming of hematopoietic stem/progenitor cells to malignant plasma cells by MafB. Cell Cycle 11, 3896–3900.10.4161/cc.22186Search in Google Scholar PubMed PubMed Central
Vicente-Duenas, C., Romero-Camarero, I., Cobaleda, C., and Sanchez-Garcia, I. (2013). Function of oncogenes in cancer development: a changing paradigm. EMBO J. 32, 1502–1513.10.1038/emboj.2013.97Search in Google Scholar PubMed PubMed Central
Vicente-Duenas, C., Hauer, J., Ruiz-Roca, L., Ingenhag, D., Rodriguez-Meira, A., Auer, F., Borkhardt, A., and Sanchez-Garcia, I. (2014). Tumoral stem cell reprogramming as a driver of cancer: Theory, biological models, implications in cancer therapy. Semin Cancer Biol.Search in Google Scholar
Vicente-Duenas, C., Romero-Camarero, I., Gonzalez-Herrero, I., Alonso-Escudero, E., Abollo-Jimenez, F., Jiang, X., Gutierrez, N.C., Orfao, A., Marin, N., Villar, L.M., et al. (2012c). A novel molecular mechanism involved in multiple myeloma development revealed by targeting MafB to haematopoietic progenitors. EMBO J. 31, 3704–3717.10.1038/emboj.2012.227Search in Google Scholar PubMed PubMed Central
Weinstein, I.B. (2002). Cancer. Addiction to oncogenes – the Achilles heel of cancer. Science 297, 63–64.10.1126/science.1073096Search in Google Scholar PubMed
Zhao, Y., Yin, X., Qin, H., Zhu, F., Liu, H., Yang, W., Zhang, Q., Xiang, C., Hou, P., Song, Z., et al. (2008). Two supporting factors greatly improve the efficiency of human iPSC generation. Cell Stem Cell 3, 475–479.10.1016/j.stem.2008.10.002Search in Google Scholar PubMed
©2014 by De Gruyter
Articles in the same Issue
- Frontmatter
- Guest Editorial
- Integrating Epigenetics
- HIGHLIGHT: NEW INSIGHTS IN EPIGENETICS
- Epigenetic control of hematopoiesis: the PU.1 chromatin connection
- Role of lncRNAs in prostate cancer development and progression
- Polycomb and Trithorax group protein-mediated control of stress responses in plants
- Transcription as a force partitioning the eukaryotic genome
- The epigenetic tracks of aging
- Early epigenetic cancer decisions
- Reviews
- Functions of the neuron-specific protein ADAP1 (centaurin-α1) in neuronal differentiation and neurodegenerative diseases, with an overview of structural and biochemical properties of ADAP1
- Titin: central player of hypertrophic signaling and sarcomeric protein quality control
- Research Articles/Short Communications
- Protein Structure and Function
- Selective modulation of plasmodial Hsp70s by small molecules with antimalarial activity
Articles in the same Issue
- Frontmatter
- Guest Editorial
- Integrating Epigenetics
- HIGHLIGHT: NEW INSIGHTS IN EPIGENETICS
- Epigenetic control of hematopoiesis: the PU.1 chromatin connection
- Role of lncRNAs in prostate cancer development and progression
- Polycomb and Trithorax group protein-mediated control of stress responses in plants
- Transcription as a force partitioning the eukaryotic genome
- The epigenetic tracks of aging
- Early epigenetic cancer decisions
- Reviews
- Functions of the neuron-specific protein ADAP1 (centaurin-α1) in neuronal differentiation and neurodegenerative diseases, with an overview of structural and biochemical properties of ADAP1
- Titin: central player of hypertrophic signaling and sarcomeric protein quality control
- Research Articles/Short Communications
- Protein Structure and Function
- Selective modulation of plasmodial Hsp70s by small molecules with antimalarial activity