Home Epigenetic control of hematopoiesis: the PU.1 chromatin connection
Article
Licensed
Unlicensed Requires Authentication

Epigenetic control of hematopoiesis: the PU.1 chromatin connection

  • Boet van Riel and Frank Rosenbauer EMAIL logo
Published/Copyright: September 2, 2014

Abstract

Purine-rich box1 (PU.1) is a transcription factor that not only has a key role in the development of most hematopoietic cell lineages but also in the suppression of leukemia. To exert these functions, PU.1 can cross-talk with multiple different proteins by forming complexes in order to activate or repress transcription. Among its protein partners are chromatin remodelers, DNA methyltransferases, and a number of other transcription factors with important roles in hematopoiesis. While a great deal of knowledge has been acquired about PU.1 function over the years, it was the development of novel genome-wide technologies, which boosted our understanding of how PU.1 acts on the chromatin to drive its repertoire of target genes. This review summarizes current knowledge and ideas of molecular mechanisms by which PU.1 controls hematopoiesis and suppresses leukemia.


Corresponding author: Frank Rosenbauer, Institute of Molecular Tumor Biology, University of Münster, D-48149 Münster, Germany, e-mail:

Acknowledgments

We thank Michael Rehli (Regensburg, Germany) for valuable suggestions on the manuscript. The literature regarding PU.1 is overwhelming, and we wish to apologize to those whose work we were unable to cite. This work was supported by the Deutsche Forschungsgemeinschaft Research Unit 1336 and Cells-in-Motion Cluster of Excellence (EXC 1003 – CiM), University of Münster, Germany.

References

Anderson, K.L., Smith, K.A., Conners, K., McKercher, S.R., Maki, R.A., and Torbett, B.E. (1998). Myeloid development is selectively disrupted in PU.1 null mice. Blood 91, 3702–3710.10.1182/blood.V91.10.3702Search in Google Scholar

Anderson, M.K., Weiss, A.H., Hernandez-Hoyos, G., Dionne, C.J., and Rothenberg, E.V. (2002). Constitutive expression of PU.1 in fetal hematopoietic progenitors blocks T cell development at the pro-T cell stage. Immunity 16, 285–296.10.1016/S1074-7613(02)00277-7Search in Google Scholar

Bai, Y., Srinivasan, L., Perkins, L., and Atchison, M.L. (2005). Protein acetylation regulates both PU.1 transactivation and Ig κ 3′ enhancer activity. J. Immunol. 175, 5160–5169.10.4049/jimmunol.175.8.5160Search in Google Scholar PubMed

Bonadies, N., Neururer, C., Steege, A., Vallabhapurapu, S., Pabst, T., and Mueller, B.U. (2010). PU.1 is regulated by NF-κB through a novel binding site in a 17 kb upstream enhancer element. Oncogene 29, 1062–1072.10.1038/onc.2009.371Search in Google Scholar PubMed

Cantor, A.B. and Orkin, S.H. (2002). Transcriptional regulation of erythropoiesis: an affair involving multiple partners. Oncogene 21, 3368–3376.10.1038/sj.onc.1205326Search in Google Scholar PubMed

Carter, D., Chakalova, L., Osborne, C.S., Dai, Y.F., and Fraser, P. (2002). Long-range chromatin regulatory interactions in vivo. Nat. Genet. 32, 623–626.10.1038/ng1051Search in Google Scholar PubMed

Chetverina, D., Aoki, T., Erokhin, M., Georgiev, P., and Schedl, P. (2014). Making connections: insulators organize eukaryotic chromosomes into independent cis-regulatory networks. Bioessays 36, 163–172.10.1002/bies.201300125Search in Google Scholar PubMed PubMed Central

Clarke S. and Gordon S. (1998). Myeloid-specific gene expression. J. Leukoc. Biol. 63, 153–168.10.1002/jlb.63.2.153Search in Google Scholar PubMed

Dahl, R., Iyer, S.R., Owens, K.S., Cuylear, D.D., and Simon, M.C. (2007). The transcriptional repressor GFI-1 antagonizes PU.1 activity through protein-protein interaction. J. Biol. Chem. 282, 6473–6483.10.1074/jbc.M607613200Search in Google Scholar PubMed PubMed Central

de la Rica, L., Rodriguez-Ubreva, J., Garcia, M., Islam, A.B., Urquiza, J.M., Hernando, H., Christensen, J., Helin, K., Gomez-Vaquero, C., and Ballestar, E. (2013). PU.1 target genes undergo Tet2-coupled demethylation and DNMT3b-mediated methylation in monocyte-to-osteoclast differentiation. Genome Biol. 14, R99.Search in Google Scholar

Dekker, J., Rippe, K., Dekker, M., and Kleckner, N. (2002). Capturing chromosome conformation. Science 295, 1306–1311.10.1126/science.1067799Search in Google Scholar PubMed

DeKoter, R.P. and Singh, H. (2000). Regulation of B lymphocyte and macrophage development by graded expression of PU.1. Science 288, 1439–1441.10.1126/science.288.5470.1439Search in Google Scholar PubMed

Del Real, M.M. and Rothenberg, E.V. (2013). Architecture of a lymphomyeloid developmental switch controlled by PU.1, Notch and Gata3. Development 140, 1207–1219.10.1242/dev.088559Search in Google Scholar PubMed PubMed Central

Ebralidze, A.K., Guibal, F.C., Steidl, U., Zhang, P., Lee, S., Bartholdy, B., Jorda, M.A., Petkova, V., Rosenbauer, F., Huang, G., et al. (2008). PU.1 expression is modulated by the balance of functional sense and antisense RNAs regulated by a shared cis-regulatory element. Genes Dev. 22, 2085–2092.10.1101/gad.1654808Search in Google Scholar PubMed PubMed Central

Feng, R., Desbordes, S.C., Xie, H., Tillo, E.S., Pixley, F., Stanley, E.R., and Graf, T. (2008). PU.1 and C/EBPα/β convert fibroblasts into macrophage-like cells. Proc. Natl. Acad. Sci. USA 105, 6057–6062.10.1073/pnas.0711961105Search in Google Scholar PubMed PubMed Central

Galson, D.L., Hensold, J.O., Bishop, T.R., Schalling, M., D’Andrea, A.D., Jones, C., Auron, P.E., and Housman, D.E. (1993). Mouse β-globin DNA-binding protein B1 is identical to a proto-oncogene, the transcription factor Spi-1/PU.1, and is restricted in expression to hematopoietic cells and the testis. Mol. Cell Biol. 13, 2929–2941.Search in Google Scholar

Gerlach, K., Hwang, Y., Nikolaev, A., Atreya, R., Dornhoff, H., Steiner, S., Lehr, H.A., Wirtz, S., Vieth, M., Waisman, A., et al. (2014). T9 cells that express the transcription factor PU.1 drive T cell-mediated colitis via IL-9 receptor signaling in intestinal epithelial cells. Nat. Immunol. 15, 676–686.10.1038/ni.2920Search in Google Scholar PubMed

Goldfarb, A.N. (2007). Transcriptional control of megakaryocyte development. Oncogene 26, 6795–6802.10.1038/sj.onc.1210762Search in Google Scholar PubMed

Hagemeier, C., Bannister, A.J., Cook, A., and Kouzarides, T. (1993). The activation domain of transcription factor PU.1 binds the retinoblastoma (RB) protein and the transcription factor TFIID in vitro: RB shows sequence similarity to TFIID and TFIIB. Proc. Natl. Acad. Sci. USA 90, 1580–1584.10.1073/pnas.90.4.1580Search in Google Scholar PubMed PubMed Central

Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y.C., Laslo, P., Cheng, J.X., Murre, C., Singh, H., and Glass, C.K. (2010). Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589.10.1016/j.molcel.2010.05.004Search in Google Scholar PubMed PubMed Central

Heinz, S., Romanoski, C.E., Benner, C., Allison, K.A., Kaikkonen, M.U., Orozco, L.D., and Glass, C.K. (2013). Effect of natural genetic variation on enhancer selection and function. Nature 503, 487–492.10.1038/nature12615Search in Google Scholar PubMed PubMed Central

Hohaus, S., Petrovick, M.S., Voso, M.T., Sun, Z., Zhang, D.E., and Tenen, D.G. (1995). PU.1 (Spi-1) and C/EBPα regulate expression of the granulocyte-macrophage colony-stimulating factor receptor α gene. Mol. Cell Biol. 15, 5830–5845.10.1128/MCB.15.10.5830Search in Google Scholar PubMed PubMed Central

Hoogenkamp, M., Lichtinger, M., Krysinska, H., Lancrin, C., Clarke, D., Williamson, A., Mazzarella, L., Ingram, R., Jorgensen, H., Fisher, A., et al. (2009). Early chromatin unfolding by RUNX1: a molecular explanation for differential requirements during specification versus maintenance of the hematopoietic gene expression program. Blood 114, 299–309.10.1182/blood-2008-11-191890Search in Google Scholar

Hromas, R., Orazi, A., Neiman, R.S., Maki, R., Van, B.C., Moore, J., and Klemsz, M. (1993). Hematopoietic lineage- and stage-restricted expression of the ETS oncogene family member PU.1. Blood 82, 2998–3004.10.1182/blood.V82.10.2998.2998Search in Google Scholar

Huang, G., Zhang, P., Hirai, H., Elf, S., Yan, X., Chen, Z., Koschmieder, S., Okuno, Y., Dayaram, T., Growney, J.D., et al. (2008). PU.1 is a major downstream target of AML1 (RUNX1) in adult mouse hematopoiesis. Nat. Genet. 40, 51–60.10.1038/ng.2007.7Search in Google Scholar

Huber, R., Pietsch, D., Panterodt, T., and Brand, K. (2012). Regulation of C/EBPβ and resulting functions in cells of the monocytic lineage. Cell Signal. 24, 1287–1296.10.1016/j.cellsig.2012.02.007Search in Google Scholar

Imoto, A., Okada, M., Okazaki, T., Kitasato, H., Harigae, H., and Takahashi, S. (2010). Metallothionein-1 isoforms and vimentin are direct PU.1 downstream target genes in leukemia cells. J. Biol. Chem. 285, 10300–10309.10.1074/jbc.M109.095810Search in Google Scholar

Iwasaki, H., Mizuno, S., Wells, R.A., Cantor, A.B., Watanabe, S., and Akashi, K. (2003). GATA-1 converts lymphoid and myelomonocytic progenitors into the megakaryocyte/erythrocyte lineages. Immunity. 19, 451–462.10.1016/S1074-7613(03)00242-5Search in Google Scholar

Kihara-Negishi, F., Yamamoto, H., Suzuki, M., Yamada, T., Sakurai, T., Tamura, T., and Oikawa, T. (2001). In vivo complex formation of PU.1 with HDAC1 associated with PU.1-mediated transcriptional repression. Oncogene 20, 6039–6047.10.1038/sj.onc.1204756Search in Google Scholar PubMed

Kihara-Negishi, F., Suzuki, M., Yamada, T., Sakurai, T., and Oikawa, T. (2005). Impaired repressor activity and biological functions of PU.1 in MEL cells induced by mutations in the acetylation motifs within the ETS domain. Biochem. Biophys. Res. Commun. 335, 477–484.10.1016/j.bbrc.2005.07.098Search in Google Scholar PubMed

Kueh, H.Y., Champhekar, A., Nutt, S.L., Elowitz, M.B., and Rothenberg, E.V. (2013). Positive feedback between PU.1 and the cell cycle controls myeloid differentiation. Science 341, 670–673.10.1126/science.1240831Search in Google Scholar PubMed PubMed Central

Laiosa, C.V., Stadtfeld, M., Xie, H., de Andres-Aguayo, L., and Graf, T. (2006). Reprogramming of committed T cell progenitors to macrophages and dendritic cells by C/EBPα and PU.1 transcription factors. Immunity 25, 731–744.10.1016/j.immuni.2006.09.011Search in Google Scholar PubMed

Lancrin, C., Mazan, M., Stefanska, M., Patel, R., Lichtinger, M., Costa, G., Vargel, O., Wilson, N.K., Moroy, T., Bonifer, C., et al. (2012). GFI1 and GFI1B control the loss of endothelial identity of hemogenic endothelium during hematopoietic commitment. Blood 120, 314–322.10.1182/blood-2011-10-386094Search in Google Scholar PubMed

Leddin, M., Perrod, C., Hoogenkamp, M., Ghani, S., Assi, S., Heinz, S., Wilson, N.K., Follows, G., Schonheit, J., Vockentanz, L., et al. (2011). Two distinct auto-regulatory loops operate at the PU.1 locus in B cells and myeloid cells. Blood 117, 2827–2838.10.1182/blood-2010-08-302976Search in Google Scholar PubMed PubMed Central

Levantini, E., Lee, S., Radomska, H.S., Hetherington, C.J., Berich-Jorda, M., Amabile, G., Zhang, P., Gonzalez, D.A., Zhang, J., Basseres, D.S., et al. (2011). RUNX1 regulates the CD34 gene in haematopoietic stem cells by mediating interactions with a distal regulatory element. EMBO J. 30, 4059–4070.10.1038/emboj.2011.285Search in Google Scholar PubMed PubMed Central

Li, Y., Okuno, Y., Zhang, P., Radomska, H.S., Chen, H., Iwasaki, H., Akashi, K., Klemsz, M.J., McKercher, S.R., Maki, R.A., et al. (2001). Regulation of the PU.1 gene by distal elements. Blood 98, 2958–2965.10.1182/blood.V98.10.2958Search in Google Scholar PubMed

Li, X., Vradii, D., Gutierrez, S., Lian, J.B., van Wijnen, A.J., Stein, J.L., Stein, G.S., and Javed, A. (2005). Subnuclear targeting of Runx1 is required for synergistic activation of the myeloid specific M-CSF receptor promoter by PU.1. J. Cell Biochem. 96, 795–809.10.1002/jcb.20548Search in Google Scholar PubMed

Lin, Y.C., Benner, C., Mansson, R., Heinz, S., Miyazaki, K., Miyazaki, M., Chandra, V., Bossen, C., Glass, C.K., and Murre, C. (2012). Global changes in the nuclear positioning of genes and intra- and interdomain genomic interactions that orchestrate B cell fate. Nat. Immunol. 13, 1196–1204.10.1038/ni.2432Search in Google Scholar PubMed PubMed Central

Lodie, T.A., Savedra, R., Jr., Golenbock, D.T., Van Beveren, C.P., Maki, R.A., and Fenton, M.J. (1997). Stimulation of macrophages by lipopolysaccharide alters the phosphorylation state, conformation, and function of PU.1 via activation of casein kinase II. J. Immunol. 158, 1848–1856.10.4049/jimmunol.158.4.1848Search in Google Scholar

Metcalf, D., Dakic, A., Mifsud, S., Di, R.L., Wu, L., and Nutt, S. (2006). Inactivation of PU.1 in adult mice leads to the development of myeloid leukemia. Proc. Natl. Acad. Sci. USA 103, 1486–1491.10.1073/pnas.0510616103Search in Google Scholar PubMed PubMed Central

Moreau-Gachelin, F., Tavitian, A., and Tambourin, P. (1988). Spi-1 is a putative oncogene in virally induced murine erythroleukaemias. Nature 331, 277–280.10.1038/331277a0Search in Google Scholar PubMed

Mueller, B.U., Pabst, T., Osato, M., Asou, N., Johansen, L.M., Minden, M.D., Behre, G., Hiddemann, W., Ito, Y., and Tenen, D.G. (2003). Heterozygous PU.1 mutations are associated with acute myeloid leukemia. Blood 101, 2074.Search in Google Scholar

Mueller, B.U., Pabst, T., Fos, J., Petkovic, V., Fey, M.F., Asou, N., Buergi, U., and Tenen, D.G. (2006). ATRA resolves the differentiation block in t (15;17) acute myeloid leukemia by restoring PU.1 expression. Blood 107, 3330–3338.10.1182/blood-2005-07-3068Search in Google Scholar PubMed PubMed Central

Nagulapalli, S., Pongubala, J.M., and Atchison, M.L. (1995). Multiple proteins physically interact with PU.1. Transcriptional synergy with NF-IL6 β (C/EBPδ, CRP3). J. Immunol. 155, 4330–4338.10.4049/jimmunol.155.9.4330Search in Google Scholar

Nutt, S.L., Metcalf, D., D’Amico, A., Polli, M., and Wu, L. (2005). Dynamic regulation of PU.1 expression in multipotent hematopoietic progenitors. J. Exp. Med. 201, 221–231.10.1084/jem.20041535Search in Google Scholar PubMed PubMed Central

Oikawa, T. and Yamada, T. (2003). Molecular biology of the Ets family of transcription factors. Gene 303, 11–34.10.1016/S0378-1119(02)01156-3Search in Google Scholar

Ostuni, R., Piccolo, V., Barozzi, I., Polletti, S., Termanini, A., Bonifacio, S., Curina, A., Prosperini, E., Ghisletti, S., and Natoli, G. (2013). Latent enhancers activated by stimulation in differentiated cells. Cell 152, 157–171.10.1016/j.cell.2012.12.018Search in Google Scholar PubMed

Pabst, T. and Mueller, B.U. (2009). Complexity of CEBPA dysregulation in human acute myeloid leukemia. Clin. Cancer Res. 15, 5303–5307.10.1158/1078-0432.CCR-08-2941Search in Google Scholar PubMed

Pennacchio, L.A., Bickmore, W., Dean, A., Nobrega, M.A., and Bejerano, G. (2013). Enhancers: five essential questions. Nat. Rev. Genet. 14, 288–295.10.1038/nrg3458Search in Google Scholar PubMed PubMed Central

Pham, T.H., Benner, C., Lichtinger, M., Schwarzfischer, L., Hu, Y., Andreesen, R., Chen, W., and Rehli, M. (2012). Dynamic epigenetic enhancer signatures reveal key transcription factors associated with monocytic differentiation states. Blood 119, e161–e171.10.1182/blood-2012-01-402453Search in Google Scholar PubMed

Pham, T.H., Minderjahn, J., Schmidl, C., Hoffmeister, H., Schmidhofer, S., Chen, W., Langst, G., Benner, C., and Rehli, M. (2013). Mechanisms of in vivo binding site selection of the hematopoietic master transcription factor PU.1. Nucleic Acids Res. 41, 6391–6402.10.1093/nar/gkt355Search in Google Scholar PubMed PubMed Central

Pio, F., Kodandapani, R., Ni, C.Z., Shepard, W., Klemsz, M., McKercher, S.R., Maki, R.A., and Ely, K.R. (1996). New insights on DNA recognition by ets proteins from the crystal structure of the PU.1 ETS domain-DNA complex. J. Biol. Chem. 271, 23329–23337.10.1074/jbc.271.38.23329Search in Google Scholar PubMed

Rosenbauer, F., Wagner, K., Kutok, J.L., Iwasaki, H., Le Beau, M.M., Okuno, Y., Akashi, K., Fiering, S., and Tenen, D.G. (2004). Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. Nat. Genet. 36, 624–630.10.1038/ng1361Search in Google Scholar PubMed

Schonheit, J., Kuhl, C., Gebhardt, M.L., Klett, F.F., Riemke, P., Scheller, M., Huang, G., Naumann, R., Leutz, A., Stocking, C., et al. (2013). PU.1 level-directed chromatin structure remodeling at the Irf8 gene drives dendritic cell commitment. Cell Rep. 3, 1617–1628.10.1016/j.celrep.2013.04.007Search in Google Scholar PubMed

Staber, P.B., Zhang, P., Ye, M., Welner, R.S., Nombela-Arrieta, C., Bach, C., Kerenyi, M., Bartholdy, B.A., Zhang, H., Berich-Jorda, M., et al. (2013). Sustained PU.1 levels balance cell-cycle regulators to prevent exhaustion of adult hematopoietic stem cells. Mol. Cell 49, 934–946.10.1016/j.molcel.2013.01.007Search in Google Scholar PubMed PubMed Central

Steidl, U., Rosenbauer, F., Verhaak, R.G., Gu, X., Ebralidze, A., Otu, H.H., Klippel, S., Steidl, C., Bruns, I., Costa, D.B., et al. (2006). Essential role of Jun family transcription factors in PU.1 knockdown-induced leukemic stem cells. Nat. Genet. 38, 1269–1277.10.1038/ng1898Search in Google Scholar

Steidl, U., Steidl, C., Ebralidze, A., Chapuy, B., Han, H.J., Will, B., Rosenbauer, F., Becker, A., Wagner, K., Koschmieder, S., et al. (2007). A distal single nucleotide polymorphism alters long-range regulation of the PU.1 gene in acute myeloid leukemia. J. Clin. Invest. 117, 2611–2620.10.1172/JCI30525Search in Google Scholar

Sterner, D.E. and Berger, S.L. (2000). Acetylation of histones and transcription-related factors. Microbiol. Mol. Biol. Rev. 64, 435–459.10.1128/MMBR.64.2.435-459.2000Search in Google Scholar

Suzuki, M., Yamada, T., Kihara-Negishi, F., Sakurai, T., Hara, E., Tenen, D.G., Hozumi, N., and Oikawa, T. (2006). Site-specific DNA methylation by a complex of PU.1 and Dnmt3a/b. Oncogene 25, 2477–2488.10.1038/sj.onc.1209272Search in Google Scholar

Tolhuis, B., Palstra, R.J., Splinter, E., Grosveld, F., and de, L.W. (2002). Looping and interaction between hypersensitive sites in the active β-globin locus. Mol. Cell 10, 1453–1465.10.1016/S1097-2765(02)00781-5Search in Google Scholar

Traver, D., Miyamoto, T., Christensen, J., Iwasaki-Arai, J., Akashi, K., and Weissman, I.L. (2001). Fetal liver myelopoiesis occurs through distinct, prospectively isolatable progenitor subsets. Blood 98, 627–635.10.1182/blood.V98.3.627Search in Google Scholar

van Riel, B., Pakozdi, T., Brouwer, R., Monteiro, R., Tuladhar, K., Franke, V., Bryne, J.C., Jorna, R., Rijkers, E.J., van, I.W., et al. (2012). A novel complex, RUNX1-MYEF2, represses hematopoietic genes in erythroid cells. Mol. Cell Biol. 32, 3814–3822.10.1128/MCB.05938-11Search in Google Scholar PubMed PubMed Central

Vangala, R.K., Heiss-Neumann, M.S., Rangatia, J.S., Singh, S.M., Schoch, C., Tenen, D.G., Hiddemann, W., and Behre, G. (2003). The myeloid master regulator transcription factor PU.1 is inactivated by AML1-ETO in t (8;21) myeloid leukemia. Blood 101, 270–277.10.1182/blood-2002-04-1288Search in Google Scholar PubMed

Wang, Q., Stacy, T., Binder, M., Marin-Padilla, M., Sharpe, A.H., and Speck, N.A. (1996). Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc. Natl. Acad. Sci. USA 93, 3444–3449.10.1073/pnas.93.8.3444Search in Google Scholar PubMed PubMed Central

Wang, J.M., Lai, M.Z., and Yang-Yen, H.F. (2003). Interleukin-3 stimulation of mcl-1 gene transcription involves activation of the PU.1 transcription factor through a p38 mitogen-activated protein kinase-dependent pathway. Mol. Cell Biol. 23, 1896–1909.10.1128/MCB.23.6.1896-1909.2003Search in Google Scholar PubMed PubMed Central

Wang, K., Wang, P., Shi, J., Zhu, X., He, M., Jia, X., Yang, X., Qiu, F., Jin, W., Qian, M., et al. (2010). PML/RARα targets promoter regions containing PU.1 consensus and RARE half sites in acute promyelocytic leukemia. Cancer Cell 17, 186–197.10.1016/j.ccr.2009.12.045Search in Google Scholar PubMed

Wei, G.H., Badis, G., Berger, M.F., Kivioja, T., Palin, K., Enge, M., Bonke, M., Jolma, A., Varjosalo, M., Gehrke, A.R., et al. (2010). Genome-wide analysis of ETS-family DNA-binding in vitro and in vivo. EMBO J. 29, 2147–2160.10.1038/emboj.2010.106Search in Google Scholar PubMed PubMed Central

Wilson, N.K., Foster, S.D., Wang, X., Knezevic, K., Schutte, J., Kaimakis, P., Chilarska, P.M., Kinston, S., Ouwehand, W.H., Dzierzak, E., et al. (2010). Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators. Cell Stem Cell 7, 532–544.10.1016/j.stem.2010.07.016Search in Google Scholar PubMed

Yamamoto, H., Kihara-Negishi, F., Yamada, T., Hashimoto, Y., and Oikawa, T. (1999). Physical and functional interactions between the transcription factor PU.1 and the coactivator CBP. Oncogene 18, 1495–1501.10.1038/sj.onc.1202427Search in Google Scholar PubMed

Yasui, D., Miyano, M., Cai, S., Varga-Weisz, P., and Kohwi-Shigematsu, T. (2002). SATB1 targets chromatin remodelling to regulate genes over long distances. Nature 419, 641–645.10.1038/nature01084Search in Google Scholar PubMed

Zarnegar, M.A., Chen, J., and Rothenberg, E.V. (2010). Cell-type-specific activation and repression of PU.1 by a complex of discrete, functionally specialized cis-regulatory elements. Mol. Cell Biol. 30, 4922–4939.10.1128/MCB.00354-10Search in Google Scholar PubMed PubMed Central

Zhang, P., Behre, G., Pan, J., Iwama, A., Wara-Aswapati, N., Radomska, H.S., Auron, P.E., Tenen, D.G., and Sun, Z. (1999). Negative cross-talk between hematopoietic regulators: GATA proteins repress PU.1. Proc. Natl. Acad. Sci. USA 96, 8705–8710.10.1073/pnas.96.15.8705Search in Google Scholar PubMed PubMed Central

Zhang, P., Zhang, X., Iwama, A., Yu, C., Smith, K.A., Mueller, B.U., Narravula, S., Torbett, B.E., Orkin, S.H., and Tenen, D.G. (2000). PU.1 inhibits GATA-1 function and erythroid differentiation by blocking GATA-1 DNA binding. Blood 96, 2641–2648.10.1182/blood.V96.8.2641Search in Google Scholar

Zhang, P., Iwasaki-Arai, J., Iwasaki, H., Fenyus, M.L., Dayaram, T., Owens, B.M., Shigematsu, H., Levantini, E., Huettner, C.S., Lekstrom-Himes, J.A., et al. (2004). Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBPα. Immunity 21, 853–863.10.1016/j.immuni.2004.11.006Search in Google Scholar PubMed

Zhu, X., Zhang, H., Qian, M., Zhao, X., Yang, W., Wang, P., Zhang, J., and Wang, K. (2012). The significance of low PU.1 expression in patients with acute promyelocytic leukemia. J. Hematol. Oncol. 5, 22.Search in Google Scholar

Received: 2014-5-5
Accepted: 2014-7-3
Published Online: 2014-9-2
Published in Print: 2014-11-1

©2014 by De Gruyter

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2014-0195/html
Scroll to top button