Home Life Sciences Twin-arginine translocation-arresting protein regions contact TatA and TatB
Article
Licensed
Unlicensed Requires Authentication

Twin-arginine translocation-arresting protein regions contact TatA and TatB

  • Johannes Taubert and Thomas Brüser EMAIL logo
Published/Copyright: July 8, 2014

Abstract

Tat systems translocate folded proteins across biological membranes of prokaryotes and plant plastids. TatBC complexes recognize N-terminal Tat signal peptides that contain a sequence motif with two conserved arginines (RR-motif), and transport takes place after a recruitment of TatA. Unfolded Tat substrate domains lower translocation efficiency and too long linkers lead to translocation arrest. To identify the components that interact with transported proteins during their passage through the translocon, we used a Tat substrate that arrests translocation at a long unfolded linker region, and we chose in vivo site-directed photo cross-linking to specifically detect the interactions of this linker region. For comparison, we included the interactions of the signal peptide and of the folded domain at the C-terminus of this construct. The data show that the linker contacts only two, structurally similar Tat components, namely TatA and TatB. These contacts depend on the recognition of the Tat-specific signal peptide. Only when membrane translocation of the globular domain was allowed – i.e., in the absence of the linker – we observed the same TatAB-contacts also to the globular domain. The data thus suggest that mature protein domains are translocated through a TatAB environment.


Corresponding author: Thomas Brüser, Institut für Mikrobiologie, Leibniz Universität Hannover, Schneiderberg 50, 30167 Hannover, Germany, Phone: +49 511 762 5945, Fax: +49 511 762 5287, e-mail:

Acknowledgments

We thank Peter G. Schultz (The Scripps Research Institute, La Jolla) for donation of the pEVOL system, and Andrea Sinz and Christian Ihling (University of Halle-Wittenberg) for mass spectrometry analysis. This work was funded by the Deutsche Forschungsgemeinschaft (GRK 1026: ‘Conformational transitions during macromolecular interactions’).

References

Alami, M., Lüke, I., Deitermann, S., Eisner, G., Koch, H.G., Brunner, J., and Müller, M. (2003). Differential interactions between a twin-arginine signal peptide and its translocase in Escherichia coli. Mol. Cell. 12, 937–946.10.1016/S1097-2765(03)00398-8Search in Google Scholar

Aldridge, C., Storm, A., Cline, K., and Dabney-Smith, C. (2012). The chloroplast twin arginine transport (Tat) component, Tha4, undergoes conformational changes leading to Tat protein transport. J. Biol. Chem. 287, 34752–34763.10.1074/jbc.M112.385666Search in Google Scholar PubMed PubMed Central

Barnett, J.P., Eijlander, R.T., Kuipers, O.P., and Robinson, C. (2008). A minimal Tat system from a gram-positive organism: a bifunctional TatA subunit participates in discrete TatAC and TatA complexes. J. Biol. Chem. 283, 2534–2542.10.1074/jbc.M708134200Search in Google Scholar PubMed

Barrett, C.M. and Robinson, C. (2005). Evidence for interactions between domains of TatA and TatB from mutagenesis of the TatABC subunits of the twin-arginine translocase. FEBS J. 272, 2261–2275.10.1111/j.1742-4658.2005.04654.xSearch in Google Scholar PubMed

Barrett, C.M., Mangels, D., and Robinson, C. (2005). Mutations in subunits of the Escherichia coli twin-arginine translocase block function via differing effects on translocation activity or Tat complex structure. J. Mol. Biol. 347, 453–463.10.1016/j.jmb.2005.01.026Search in Google Scholar PubMed

Berthelmann, F., Mehner, D., Richter, S., Lindenstrauß, U., Lünsdorf, H., Hause, G., and Brüser, T. (2008). Recombinant expression of tatABC and tatAC results in the formation of interacting cytoplasmic TatA tubes in Escherichia coli. J. Biol. Chem. 283, 25281–25289.10.1074/jbc.M707757200Search in Google Scholar PubMed

Blaudeck, N., Kreutzenbeck, P., Müller, M., Sprenger, G.A., and Freudl, R. (2005). Isolation and characterization of bifunctional Escherichia coli TatA mutant proteins that allow efficient Tat-dependent protein translocation in the absence of TatB. J. Biol. Chem. 280, 3426–3432.10.1074/jbc.M411210200Search in Google Scholar PubMed

Bolhuis, A., Mathers, J.E., Thomas, J.D., Barrett, C.M., and Robinson, C. (2001). TatB and TatC form a functional and structural unit of the twin-arginine translocase from Escherichia coli. J. Biol. Chem. 276, 20213–20219.10.1074/jbc.M100682200Search in Google Scholar PubMed

Brüser, T. and Sanders, C. (2003). An alternative model of the twin arginine translocation system. Microbiol. Res. 158, 7–17.10.1078/0944-5013-00176Search in Google Scholar PubMed

Brüser, T., Deutzmann, R., and Dahl, C. (1998). Evidence against the double-arginine motif as the only determinant for protein translocation by a novel Sec-independent pathway in Escherichia coli. FEMS Microbiol. Lett. 164, 329–336.10.1016/S0378-1097(98)00233-XSearch in Google Scholar

Brüser, T., Yano, T., Brune, D.C., and Daldal, F. (2003). Membrane targeting of a folded and cofactor-containing protein. Eur. J. Biochem. 270, 1211–1221.10.1046/j.1432-1033.2003.03481.xSearch in Google Scholar PubMed

Carter, C.W. Jr., Kraut, J., Freer, S.T., Nguyen Huu, X., Alden, R.A., and Bartsch, R.G. (1974). Two-Angstrom crystal structure of oxidized Chromatium high potential iron protein. J. Biol. Chem. 249, 4212–4225.10.1016/S0021-9258(19)42505-2Search in Google Scholar

Casadaban, M.J. (1976). Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. J. Mol. Biol. 104, 541–555.10.1016/0022-2836(76)90119-4Search in Google Scholar PubMed

Chin, J.W., Martin, A.B., King, D.S., Wang, L., and Schultz, P.G. (2002). Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli. Proc. Natl. Acad. Sci. USA 99, 11020–11024.10.1073/pnas.172226299Search in Google Scholar PubMed PubMed Central

Cline, K. and McCaffery, M. (2007). Evidence for a dynamic and transient pathway through the TAT protein transport machinery. EMBO J. 26, 3039–3049.10.1038/sj.emboj.7601759Search in Google Scholar PubMed PubMed Central

Cline, K. and Mori, H. (2001). Thylakoid ΔpH-dependent precursor proteins bind to a cpTatC-Hcf106 complex before Tha4-dependent transport. J. Cell Biol. 154, 719–729.10.1083/jcb.200105149Search in Google Scholar PubMed PubMed Central

Dabney-Smith, C., Mori, H., and Cline, K. (2006). Oligomers of Tha4 organize at the thylakoid Tat translocase during protein transport. J. Biol. Chem. 281, 5476–5483.10.1074/jbc.M512453200Search in Google Scholar PubMed

De Keersmaeker, S., Vrancken, K., Van Mellaert, L., Anne, J., and Geukens, N. (2007). The Tat pathway in Streptomyces lividans: interaction of Tat subunits and their role in translocation. Microbiology 153, 1087–1094.10.1099/mic.0.2006/003053-0Search in Google Scholar PubMed

Frielingsdorf, S. and Klösgen, R.B. (2007). Prerequisites for terminal processing of thylakoidal Tat substrates. J. Biol. Chem. 282, 24455–24462.10.1074/jbc.M702630200Search in Google Scholar PubMed

Fröbel, J., Rose, P., Lausberg, F., Blummel, A.S., Freudl, R., and Müller, M. (2012). Transmembrane insertion of twin-arginine signal peptides is driven by TatC and regulated by TatB. Nat. Commun. 3, 1311.10.1038/ncomms2308Search in Google Scholar PubMed PubMed Central

Gerard, F. and Cline, K. (2006). Efficient twin arginine translocation (Tat) Pathway transport of a precursor protein covalently anchored to its initial cpTatC binding site. J. Biol. Chem. 281, 6130–6135.10.1074/jbc.M512733200Search in Google Scholar PubMed

Gerard, F. and Cline, K. (2007). The thylakoid proton gradient promotes an advanced stage of signal peptide binding deep within the Tat pathway receptor complex. J. Biol. Chem. 282, 5263–5272.10.1074/jbc.M610337200Search in Google Scholar PubMed

Gogala, M., Becker, T., Beatrix, B., Armache, J.P., Barrio-Garcia, C., Berninghausen, O., and Beckmann, R. (2014). Structures of the Sec61 complex engaged in nascent peptide translocation or membrane insertion. Nature 506, 107–110.10.1038/nature12950Search in Google Scholar PubMed

Goosens, V.J., Monteferrante, C.G., and van Dijl, J.M. (2014). The Tat system of Gram-positive bacteria. Biochim Biophys Acta. 1843, 1698–1706.10.1016/j.bbamcr.2013.10.008Search in Google Scholar PubMed

Guex, N. and Peitsch, M.C. (1997). SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714–2723.10.1002/elps.1150181505Search in Google Scholar PubMed

Halbig, D., Wiegert, T., Blaudeck, N., Freudl, R., and Sprenger, G.A. (1999). The efficient export of NADP-containing glucose-fructose oxidoreductase to the periplasm of Zymomonas mobilis depends both on an intact twin-arginine motif in the signal peptide and on the generation of a structural export signal induced by cofactor binding. Eur. J. Biochem. 263, 543–551.10.1046/j.1432-1327.1999.00536.xSearch in Google Scholar PubMed

Hou, B. and Brüser, T. (2011). The Tat-dependent protein translocation pathway. Biomol. Concepts. 2, 507–523.10.1515/BMC.2011.040Search in Google Scholar PubMed

Hou, B., Lin, P.J., and Johnson, A.E. (2012). Membrane protein TM segments are retained at the translocon during integration until the nascent chain cues FRET-detected release into bulk lipid. Mol. Cell. 48, 398–408.10.1016/j.molcel.2012.08.023Search in Google Scholar PubMed PubMed Central

Ize, B., Gerard, F., Zhang, M., Chanal, A., Voulhoux, R., Palmer, T., Filloux, A., and Wu, L.F. (2002). In vivo dissection of the Tat translocation pathway in Escherichia coli. J. Mol. Biol. 317, 327–335.10.1006/jmbi.2002.5431Search in Google Scholar PubMed

Ize, B., Stanley, N.R., Buchanan, G., and Palmer, T. (2003). Role of the Escherichia coli Tat pathway in outer membrane integrity. Mol. Microbiol. 48, 1183–1193.10.1046/j.1365-2958.2003.03504.xSearch in Google Scholar PubMed

Jack, R.L., Sargent, F., Berks, B.C., Sawers, G., and Palmer, T. (2001). Constitutive expression of Escherichia coli tat genes indicates an important role for the twin-arginine translocase during aerobic and anaerobic growth. J. Bacteriol. 183, 1801–1804.10.1128/JB.183.5.1801-1804.2001Search in Google Scholar PubMed PubMed Central

Jakob, M., Kaiser, S., Gutensohn, M., Hanner, P., and Klösgen, R.B. (2009). Tat subunit stoichiometry in Arabidopsis thaliana challenges the proposed function of TatA as the translocation pore. Biochim. Biophys. Acta. 1793, 388–394.10.1016/j.bbamcr.2008.09.006Search in Google Scholar PubMed

Kauer, J.C., Erickson-Viitanen, S., Wolfe, H.R. Jr., and DeGrado, W.F. (1986). p-Benzoyl-L-phenylalanine, a new photoreactive amino acid. Photolabeling of calmodulin with a synthetic calmodulin-binding peptide. J. Biol. Chem. 261, 10695–10700.10.1016/S0021-9258(18)67441-1Search in Google Scholar

Kreutzenbeck, P., Kröger, C., Lausberg, F., Blaudeck, N., Sprenger, G.A., and Freudl, R. (2007). Escherichia coli twin arginine (Tat) mutant translocases possessing relaxed signal peptide recognition specificities. J. Biol. Chem. 282, 7903–7911.10.1074/jbc.M610126200Search in Google Scholar PubMed

Lausberg, F., Fleckenstein, S., Kreutzenbeck, P., Fröbel, J., Rose, P., Müller, M., and Freudl, R. (2012). Genetic evidence for a tight cooperation of TatB and TatC during productive recognition of twin-arginine (Tat) signal peptides in Escherichia coli. PLoS One 7, e39867.10.1371/journal.pone.0039867Search in Google Scholar PubMed PubMed Central

Lindenstrauß, U. and Brüser, T. (2009). Tat transport of linker-containing proteins in Escherichia coli. FEMS Microbiol. Lett. 295, 135–140.10.1111/j.1574-6968.2009.01600.xSearch in Google Scholar PubMed

Maurer, C., Panahandeh, S., Jungkamp, A.C., Moser, M., and Müller, M. (2010). TatB functions as an oligomeric binding site for folded Tat precursor proteins. Mol. Biol. Cell. 21, 4151–4161.10.1091/mbc.e10-07-0585Search in Google Scholar

Mori, H. and Cline, K. (2002). A twin arginine signal peptide and the pH gradient trigger reversible assembly of the thylakoid ΔpH/Tat translocase. J. Cell Biol. 157, 205–210.10.1083/jcb.200202048Search in Google Scholar PubMed PubMed Central

Oates, J., Barrett, C.M., Barnett, J.P., Byrne, K.G., Bolhuis, A., and Robinson, C. (2005). The Escherichia coli twin-arginine translocation apparatus incorporates a distinct form of TatABC complex, spectrum of modular TatA complexes and minor TatAB complex. J. Mol. Biol. 346, 295–305.10.1016/j.jmb.2004.11.047Search in Google Scholar PubMed

Pal, D., Fite, K., and Dabney-Smith, C. (2013). Direct interaction between a precursor mature domain and transport component Tha4 during twin arginine transport of chloroplasts. Plant Physiol. 161, 990–1001.10.1104/pp.112.207522Search in Google Scholar PubMed PubMed Central

Palmer, T. and Berks, B.C. (2012). The twin-arginine translocation (Tat) protein export pathway. Nat. Rev. Microbiol. 10, 483–496.10.1038/nrmicro2814Search in Google Scholar PubMed

Park, E., Menetret, J.F., Gumbart, J.C., Ludtke, S.J., Li, W., Whynot, A., Rapoport, T.A., and Akey, C.W. (2014). Structure of the SecY channel during initiation of protein translocation. Nature 506, 102–106.10.1038/nature12720Search in Google Scholar PubMed PubMed Central

Pop, O.I., Westermann, M., Volkmer-Engert, R., Schulz, D., Lemke, C., Schreiber, S., Gerlach, R., Wetzker, R., and Müller, J.P. (2003). Sequence-specific binding of prePhoD to soluble TatAd indicates protein-mediated targeting of the Tat export in Bacillus subtilis. J. Biol. Chem. 278, 38428–38436.10.1074/jbc.M306516200Search in Google Scholar PubMed

Ramasamy, S., Abrol, R., Suloway, C.J., and Clemons, W.M. Jr. (2013). The glove-like structure of the conserved membrane protein TatC provides insight into signal sequence recognition in twin-arginine translocation. Structure 21, 777–788.10.1016/j.str.2013.03.004Search in Google Scholar PubMed PubMed Central

Richter, S. and Brüser, T. (2005). Targeting of unfolded PhoA to the TAT translocon of Escherichia coli. J. Biol. Chem. 280, 42723–42730.10.1074/jbc.M509570200Search in Google Scholar PubMed

Richter, S., Lindenstrauss, U., Lücke, C., Bayliss, R., and Brüser, T. (2007). Functional Tat transport of unstructured, small, hydrophilic proteins. J. Biol. Chem. 282, 33257–33264.10.1074/jbc.M703303200Search in Google Scholar PubMed

Rodriguez, F., Rouse, S.L., Tait, C.E., Harmer, J., De Riso, A., Timmel, C.R., Sansom, M.S., Berks, B.C., and Schnell, J.R. (2013). Structural model for the protein-translocating element of the twin-arginine transport system. Proc. Natl. Acad. Sci. USA 110, E1092–E1101.10.1073/pnas.1219486110Search in Google Scholar PubMed PubMed Central

Rollauer, S.E., Tarry, M.J., Graham, J.E., Jaaskelainen, M., Jager, F., Johnson, S., Krehenbrink, M., Liu, S.M., Lukey, M.J., Marcoux, J., et al. (2012). Structure of the TatC core of the twin-arginine protein transport system. Nature 492, 210–214.10.1038/nature11683Search in Google Scholar PubMed PubMed Central

Ryu, Y. and Schultz, P.G. (2006). Efficient incorporation of unnatural amino acids into proteins in Escherichia coli. Nat. Met. 3, 263–265.10.1038/nmeth864Search in Google Scholar PubMed

Sargent, F., Stanley, N.R., Berks, B.C., and Palmer, T. (1999). Sec-independent protein translocation in Escherichia coli. A distinct and pivotal role for the TatB protein. J. Biol. Chem. 274, 36073–36082.10.1074/jbc.274.51.36073Search in Google Scholar PubMed

Silvestro, A., Pommier, J., Pascal, M.C., and Giordano, G. (1989). The inducible trimethylamine N-oxide reductase of Escherichia coli K12: its localization and inducers. Biochim. Biophys. Acta. 999, 208–216.10.1016/0167-4838(89)90220-3Search in Google Scholar PubMed

Stanley, N.R., Palmer, T., and Berks, B.C. (2000). The twin arginine consensus motif of Tat signal peptides is involved in Sec- independent protein targeting in Escherichia coli. J. Biol. Chem. 275, 11591–11596.10.1074/jbc.275.16.11591Search in Google Scholar PubMed

Yen, M.R., Tseng, Y.H., Nguyen, E.H., Wu, L.F., and Saier, M.H., Jr. (2002). Sequence and phylogenetic analyses of the twin-arginine targeting (Tat) protein export system. Arch. Microbiol. 177, 441–450.10.1007/s00203-002-0408-4Search in Google Scholar PubMed

Young, T.S., Ahmad, I., Yin, J.A., and Schultz, P.G. (2010). An enhanced system for unnatural amino acid mutagenesis in E. coli. J. Mol. Biol. 395, 361–374.10.1016/j.jmb.2009.10.030Search in Google Scholar PubMed

Received: 2014-3-17
Accepted: 2014-6-10
Published Online: 2014-7-8
Published in Print: 2014-7-1

©2014 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Guest Editorial
  3. Highlight: conformational transitions in macromolecular interactions
  4. Single-molecule spectroscopy of unfolded proteins and chaperonin action
  5. Influence of the polypeptide environment next to amyloidogenic peptides on fibril formation
  6. Structure of large dsDNA viruses
  7. Functional aspects of extracellular cyclophilins
  8. Generic tools for conditionally altering protein abundance and phenotypes on demand
  9. Structural insights into calmodulin/Munc13 interaction
  10. Interaction of linear polyamines with negatively charged phospholipids: the effect of polyamine charge distance
  11. Interaction of the human N-Ras protein with lipid raft model membranes of varying degrees of complexity
  12. Lanthanides as substitutes for calcium ions in the activation of plant α-type phospholipase D
  13. Insights from reconstitution reactions of COPII vesicle formation using pure components and low mechanical perturbation
  14. Identification of key residues in the formate channel FocA that control import and export of formate
  15. Twin-arginine translocation-arresting protein regions contact TatA and TatB
  16. Biophysical and biochemical analysis of hnRNP K: arginine methylation, reversible aggregation and combinatorial binding to nucleic acids
  17. An ancient oxidoreductase making differential use of its cofactors
  18. Biophysical characterization of polyomavirus minor capsid proteins
  19. Structural basis for PTPA interaction with the invariant C-terminal tail of PP2A
  20. Correlating structure and ligand affinity in drug discovery: a cautionary tale involving second shell residues
  21. Thermodynamic signatures in macromolecular interactions involving conformational flexibility
Downloaded on 5.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2014-0170/html
Scroll to top button