Interaction of the human N-Ras protein with lipid raft model membranes of varying degrees of complexity
-
Alexander Vogel
Abstract
Ternary lipid mixtures composed of cholesterol, saturated (frequently with sphingosine backbone), and unsaturated phospholipids show stable phase separation and are often used as model systems of lipid rafts. Yet, their ability to reproduce raft properties and function is still debated. We investigated the properties and functional aspects of three lipid raft model systems of varying degrees of biological relevance – PSM/POPC/Chol, DPPC/POPC/Chol, and DPPC/DOPC/Chol – using 2H solid-state nuclear magnetic resonance (NMR) spectroscopy, fluorescence microscopy, and atomic force microscopy. While some minor differences were observed, the general behavior and properties of all three model mixtures were similar to previously investigated influenza envelope lipid membranes, which closely mimic the lipid composition of biological membranes. For the investigation of the functional aspects, we employed the human N-Ras protein, which is posttranslationally modified by two lipid modifications that anchor the protein to the membrane. It was previously shown that N-Ras preferentially resides in liquid-disordered domains and exhibits a time-dependent accumulation in the domain boundaries of influenza envelope lipid membranes. For all three model mixtures, we observed the same membrane partitioning behavior for N-Ras. Therefore, we conclude that even relatively simple models of raft membranes are able to reproduce many of their specific properties and functions.
Acknowledgments
The study was supported by the Deutsche Forschungsgemeinschaft [DFG HU 720/10-1 (D.H.), SFB 642 (R.W.), and SFB 740 (A.H.)]
References
Aittoniemi, J., Niemela, P.S., Hyvonen, M.T, Karttunen, M., and Vattulainen, I. (2007). Insight into the putative specific interactions between cholesterol, sphingomyelin and palmitoyl-oleoyl phosphatidylcholine. Biophys. J. 92, 1125–1137.10.1529/biophysj.106.088427Suche in Google Scholar
Angelova, M., Soléau, S., Méléard, P., Faucon, F., and Bothorel, P. (1992). Preparation of giant vesicles by external AC electric fields. Kinetics and applications. In: Trends in Colloid and Interface Science VI. C. Helm, M. Lösche and H. Möhwald, eds. (Berlin/Heidelberg: Springer), pp. 127–131.Suche in Google Scholar
Bader, B., Kuhn, K., Owen, D.J., Waldmann, H., Wittinghofer, A., and Kuhlmann, J. (2000). Bioorganic synthesis of lipid-modified proteins for the study of signal transduction. Nature 403, 223–226.10.1038/35003249Suche in Google Scholar
Bartels, T., Lankalapalli, R.S., Bittman, R., Beyer, K., and Brown, M.F. (2008). Raftlike mixtures of sphingomyelin and cholesterol investigated by solid-state 2H NMR spectroscopy. J. Am. Chem. Soc. 130, 14521–14532.10.1021/ja801789tSuche in Google Scholar
Brown, D.A. and London, E. (2000). Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J. Biol. Chem. 275, 17221–17224.10.1074/jbc.R000005200Suche in Google Scholar
Brunsveld, L., Kuhlmann, J., Alexandrov, K., Wittinghofer, A., Goody, R.S., and Waldmann, H.. (2006). Lipidated Ras and Rab peptides and proteins – synthesis, structure and function. Angew. Chem. Int. Ed. 45, 6622–6646.10.1002/anie.200600855Suche in Google Scholar
Brunsveld, L., Waldmann, H. and Huster, D. (2009). Membrane binding of lipidated Ras peptides and proteins – the structural point of view. Biochim. Biophys. Acta 1788, 273–288.10.1016/j.bbamem.2008.08.006Suche in Google Scholar
Bunge, A., Müller, P., Stöckl, M., Herrmann, A., and Huster, D. (2008). Characterization of the Ternary Mixture of Sphingomyelin, POPC, and cholesterol: support for an inhomogeneous lipid distribution at high temperatures. Biophys. J. 94, 2680–2690.10.1529/biophysj.107.112904Suche in Google Scholar
Caroni, P. (2001). Actin cytoskeleton regulation through modulation of PI(4, 5)P-2 rafts. EMBO J. 20, 4332–4336.10.1093/emboj/20.16.4332Suche in Google Scholar
Casey, P.J. (1995). Protein lipidation in cell signaling. Science 268, 221–225.10.1126/science.7716512Suche in Google Scholar
de Almeida, R.F., M., Fedorov, A., and Prieto, M. (2003). Sphingomyelin/phosphatidylcholine/cholesterol phase diagram, boundaries and composition of lipid rafts. Biophys. J. 85, 2406–2416.10.1016/S0006-3495(03)74664-5Suche in Google Scholar
Filippov, A., Oradd, G., and Lindblom, G. (2004). Lipid lateral diffusion in ordered and disordered phases in raft mixtures. Biophys. J. 86, 891–896.10.1016/S0006-3495(04)74164-8Suche in Google Scholar
Gamier-Lhomme, M., Grelard, A., Byrne, R.D., Loudet, C., Dufourc, E.J., and Larijani, B. (2007). Probing the dynamics of intact cells and nuclear envelope precursor membrane vesicles by deuterium solid state NMR spectroscopy. Biochim. Biophys. Acta 1768, 2516–2527.10.1016/j.bbamem.2007.06.004Suche in Google Scholar
Gorfe, A.A., Pellarin, R., and Caflisch, A. (2004). Membrane localization and flexibility of a lipidated ras peptide studied by molecular dynamics simulations. J. Am. Chem. Soc. 126, 15277–15286.10.1021/ja046607nSuche in Google Scholar
Gueldenhaupt, J., Rudack, T., Bachler, P., Mann, D., Triola, G., Waldmann, H., Koetting, C., and Gerwert, K. (2012). N-Ras forms dimers at POPC membranes. Biophys. J. 103, 1585–1593.10.1016/j.bpj.2012.08.043Suche in Google Scholar
Haugh, J.M. and Lauffenburger, D.A. (1997). Physical modulation of intracellular signaling processes by locational regulation. Biophys. J. 72, 2014–2031.10.1016/S0006-3495(97)78846-5Suche in Google Scholar
Huster, D., Vogel, A., Katzka, C., Scheidt, H.A., Binder, H., Dante, S., Gutberlet, T., Zschörnig, O., Waldmann, H., and Arnold, K. (2003). Membrane insertion of a lipidated Ras peptide studied by FTIR, solid-state NMR and neutron diffraction spectroscopy. J. Am. Chem. Soc. 125, 4070–4079.10.1021/ja0289245Suche in Google Scholar
Ionova, I.V., Livshits, V.A., and Marsh, D. (2012). Phase diagram of ternary cholesterol/palmitoylsphingomyelin/palmitoyloleoyl-phosphatidylcholine mixtures, spin-label EPR study of lipid-raft formation. Biophys. J. 102, 1856–1865.10.1016/j.bpj.2012.03.043Suche in Google Scholar
Ipsen, J.H., Karlstrom, G., Mouritsen, O.G., Wennerstrom, H., and Zuckermann, M.J. (1987). Phase-equilibria in the phosphatidylcholine-cholesterol system. Biochim. Biophys. Acta 905, 162–172.10.1016/0005-2736(87)90020-4Suche in Google Scholar
Janosch, S., Nicolini, C., Ludolph, B., Peters, C., Volkert, M., Hazlet, T.L., Gratton, E., Waldmann, H., and Winter, R. (2004). Partitioning of dual-lipidated peptides into membrane microdomains, lipid sorting vs peptide aggregation. J. Am. Chem. Soc. 126, 7496–7503.10.1021/ja049922iSuche in Google Scholar PubMed
Janosi, L. and Gorfe, A.A. (2010). Segregation of negatively charged phospholipids by the polycationic and farnesylated membrane anchor of Kras. Biophys. J. 99, 3666–3674.10.1016/j.bpj.2010.10.031Suche in Google Scholar PubMed PubMed Central
Janosi, L., Li, Z., Hancock, J.F., and Gorfe, A.A. (2012). Organization, dynamics and segregation of Ras nanoclusters in membrane domains. Proc. Natl. Acad. Sci. USA 109, 8097–8102.10.1073/pnas.1200773109Suche in Google Scholar
Karnovsky, M.J., Kleinfeld, A.M., Hoover, R.L., and Klausner, R.D. (1982). The concept of lipid domains in membranes. J. Cell Biol. 94, 1–6.10.1083/jcb.94.1.1Suche in Google Scholar
Kusumi, A., Subczynski, W.K., Pasenkiewiczgierula, M., Hyde, J.S., and Merkle, H. (1986). Spin-label studies on phosphatidylcholine-cholesterol membranes – effects of alkyl chain-length and unsaturation in the fluid phase. Biochim. Biophys. Acta 854, 307–317.10.1016/0005-2736(86)90124-0Suche in Google Scholar
Kuzmin, P.I., Akimov, S.A., Chizmadzhev, Y.A., Zimmerberg, J., and Cohen, F.S. (2005). Line tension and interaction energies of membrane rafts calculated from lipid splay and tilt. Biophys. J. 88, 1120–1133.10.1529/biophysj.104.048223Suche in Google Scholar PubMed PubMed Central
Leslie, M. (2011). Do lipid rafts exist? Science 334, 1046–1047.10.1126/science.334.6059.1046-bSuche in Google Scholar PubMed
Li, Z. and Gorfe, A.A. (2013). Deformation of a two-domain lipid bilayer due to asymmetric insertion of lipid-modified Ras paptides. Soft Matter 9, 11249–11256.10.1039/c3sm51388bSuche in Google Scholar
Li, Z., Janosi, L., and Gorfe, A.A. (2012). Formation and domain partitioning of H-ras peptide nanoclusters, effects of peptide concentration and lipid composition. J. Am. Chem. Soc. 134, 17278–17285.10.1021/ja307716zSuche in Google Scholar PubMed PubMed Central
Luzzati, V. and Husson, F. (1962). The structure of the liquid-crystalline phases of lipid-water systems. J. Cell Biol. 12, 207–219.10.1083/jcb.12.2.207Suche in Google Scholar PubMed PubMed Central
Marsh, D. (2010). Liquid-ordered phases induced by cholesterol: A compendium of binary phase diagrams. Biochim. Biophys. Acta Biomembr. 1798, 688–699.10.1016/j.bbamem.2009.12.027Suche in Google Scholar PubMed
McConnell, H.M. and Vrljic, M. (2003). Liquid-liquid immiscibility in membranes. Annu. Rev. Biophys. Biomol. Struct. 32, 469–492.10.1146/annurev.biophys.32.110601.141704Suche in Google Scholar PubMed
McLaughlin, S., Wang, J.Y., Gambhir, A., and Murray, D. (2002). PIP2 and proteins, Interactions, organization and information flow. Annu. Rev. Biophys. Biomol. Struct. 31, 151–175.10.1146/annurev.biophys.31.082901.134259Suche in Google Scholar
Murray, D., Ben-Tal, N., Honig, B., and McLaughlin, S. (1997). Electrostatic interaction of myristoylated proteins with membranes, simple physics, complicated biology. Structure 5, 985–989.10.1016/S0969-2126(97)00251-7Suche in Google Scholar
Oradd, G., Westerman, P.W., and Lindblom, G. (2005). Lateral diffusion coefficients of separate lipid species in a ternary raft-forming bilayer, a Pfg-NMR multinuclear study. Biophys. J. 89, 315–320.10.1529/biophysj.105.061762Suche in Google Scholar
Pagano, R.E., Cherry, R.J., and Chapman, D. (1973). Phase-transitions and heterogeneity in lipid bilayers. Science 181, 557–559.10.1126/science.181.4099.557Suche in Google Scholar
Petit, V.A. and Edidin, M. (1974). Lateral phase separation of lipids in plasma-membranes – Effect of temperature on mobility of membrane antigens. Science 184, 1183–1185.10.1126/science.184.4142.1183Suche in Google Scholar
Petrache, H.I., Dodd, S.W., and Brown, M.F. (2000). Area per lipid and acyl length distributions in fluid phosphatidylcholines determined by 2H NMR spectroscopy. Biophys. J. 79, 3172–3192.10.1016/S0006-3495(00)76551-9Suche in Google Scholar
Peyker, A., Rocks, O., and Bastiaens, P.I.H. (2005). Imaging activation of two Ras isoforms simultaneously in a single cell. ChemBioChem 6, 78–85.10.1002/cbic.200400280Suche in Google Scholar PubMed
Pike, L.J. (2006). Rafts defined, a report on the Keystone Symposium on Lipid Rafts and Cell Function. J. Lipid Res. 47, 1597–1598.10.1194/jlr.E600002-JLR200Suche in Google Scholar PubMed
Polozov, I.V. and Gawrisch, K. (2006). Characterization of the liquid-ordered state by proton MAS NMR. Biophys. J. 90, 2051–2061.10.1529/biophysj.105.070441Suche in Google Scholar PubMed PubMed Central
Prior, I.A., Muncke, C., Parton, R.G., and Hancock, J.F. (2003). Direct visualization of Ras proteins in spatially distinct cell surface microdomains. J. Cell Biol. 160, 165–170.10.1083/jcb.200209091Suche in Google Scholar PubMed PubMed Central
Reinert, J.C. and Steim, J.M. (1970). Calorimetric detection of a membrane-lipid phase transition in living cells. Science 168, 1580–1582.10.1126/science.168.3939.1580Suche in Google Scholar
Reuther, G., Tan, K.T., Kohler, J., Nowak, C., Pampel, A., Arnold, K., Kuhlmann, J., Waldmann, H., and Huster, D. (2006a). Structural model of the membrane-bound C terminus of lipid-modified human N-ras protein. Angew. Chem. Int. Ed. 45, 5387–5390.10.1002/anie.200504266Suche in Google Scholar
Reuther, G., Tan, K.T., Vogel, A., Nowak, C., Arnold, K., Kuhlmann, J., Waldmann, H., and Huster, D. (2006b). The lipidated membrane anchor of full length N-Ras protein shows an extensive dynamics as revealed by solid-state NMR spectroscopy. J. Am. Chem. Soc. 128, 13840–13846.10.1021/ja063635sSuche in Google Scholar
Rocks, O., Peyker, A., Kahms, M., Verveer, P.J., Koerner, C., Lumbierres, M., Kuhlmann, J., Waldmann H., Wittinghofer, A., and Bastiaens, P.I.H. (2005). An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science 307, 1746–1752.10.1126/science.1105654Suche in Google Scholar
Scheidt, H., A., Meyer, T., Nikolaus, J., Baek, D.J. Haralampiev, I., Thomas, L., Bittman, R., Müller, P., Herrmann, A., and Huster, D. Cholesterol’s aliphatic side chain structure modulates membrane properties. (2013). Angew. Chem. Int. Ed. 52, 12848–12851.10.1002/anie.201306753Suche in Google Scholar
Simons, K. and Ikonen, E. (1997). Functional rafts in cell membranes. Nature 387, 569–572.10.1038/42408Suche in Google Scholar
Simons, K. and Vanmeer, G. (1988). Lipid sorting in epithelial cells. Biochemistry 27, 6197–6202.10.1021/bi00417a001Suche in Google Scholar
Singer, S.J. and Nicolson, G.L. (1972). Fluid mosaic model of structure of cell-membranes. Science 175, 720–731.10.1126/science.175.4023.720Suche in Google Scholar
Stier, A. and Sackmann, E. (1973). Spin labels as enzyme substrates, Heterogeneous lipid distribution in liver microsomal membranes. Biochim. Biophys. Acta, Biomembr. 311, 400–408.10.1016/0005-2736(73)90320-9Suche in Google Scholar
Veatch, S.L., Soubias, O., Keller, S.L., and Gawrisch, K. (2007a). Critical fluctuations in domain-forming lipid mixtures. Proc. Natl. Acad. Sci. USA 104, 17650–17655.10.1073/pnas.0703513104Suche in Google Scholar PubMed PubMed Central
Veatch, S.L., Leung, S.S.W., Hancock, R.E.W., and Thewalt, J.L. (2007b). Fluorescent probes alter miscibility phase boundaries in ternary vesicles. J. Phys. Chem. B. 111, 502–504.10.1021/jp067636iSuche in Google Scholar PubMed
Viola, A., Schroeder, S., Sakakibara, Y., and Lanzavecchia, A. (1999). T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science 283, 680–682.10.1126/science.283.5402.680Suche in Google Scholar PubMed
Vogel, A., Katzka, C.P., Waldmann, H., Arnold, K., Brown, M.F., and Huster, D. (2005). Lipid modifications of a Ras peptide exhibit altered packing and mobility versus host membrane as detected by 2H solid-state NMR. J. Am. Chem. Soc. 127, 12263–12272.10.1021/ja051856cSuche in Google Scholar PubMed
Vogel, A., Tan, K.T., Waldmann, H., Feller, S.E., Brown, M.F., and Huster, D. (2007). Flexibility of ras lipid modifications studied by 2H solid-state NMR and molecular dynamics simulations. Biophys. J. 93, 2697–2712.10.1529/biophysj.107.104562Suche in Google Scholar PubMed PubMed Central
Vogel, A., Reuther, G., Weise, K., Triola, G., Nikolaus, J., Tan, K.T., Nowak, C., Herrmann, A., Waldmann, H., Winter, R., et al. (2009). The lipid modifications of Ras that sense membrane environments and induce local enrichment. Angew. Chem. Int. Ed. 48, 8784–8787.10.1002/anie.200903396Suche in Google Scholar PubMed
Vogel, A., Reuther, G., Roark, M.B., Tan, K.T., Waldmann, H., Feller, S.E., and Huster, D. (2010). Backbone conformational flexibility of the lipid modified membrane anchor of the human N-Ras protein investigated by solid-state NMR and molecular dynamics simulation. Biochim. Biophys. Acta 1798, 275–285.10.1016/j.bbamem.2009.09.023Suche in Google Scholar PubMed
Volkert, M., Uwai, K., Tebbe, A., Popkirova, B., Wagner, M., Kuhlmann, J., and Waldmann, H. (2003). Synthesis and biological activity of photoactivatable N-Ras peptides and proteins. J. Am. Chem. Soc. 125, 12749–12758.10.1021/ja036178dSuche in Google Scholar PubMed
Wang, T.Y., Leventis, R., and Silvius, J.R. (2001). Partitioning of lipidated peptide sequences into liquid-ordered lipid domains in model and biological membranes. Biochemistry 40, 13031–13040.10.1021/bi0112311Suche in Google Scholar PubMed
Weise, K., Triola, G., Brunsveld, L., Waldmann, H., and Winter, R. (2009). Influence of the lipidation motif on the partitioning and association of N-Ras in model membrane subdomains. J. Am. Chem. Soc. 131, 1557–1564.10.1021/ja808691rSuche in Google Scholar PubMed
Weise, K., Kapoor, S., Denter, C., Nikolaus, J., Opitz, N., Koch, S., Triola, G., Herrmann, A., Waldmann H., and Winter, R. (2011). Membrane-mediated induction and sorting of K-Ras microdomain signaling platforms. J. Am. Chem. Soc. 133, 880–887.10.1021/ja107532qSuche in Google Scholar PubMed
Wittinghofer, A. and Waldmann H. (2000). Ras – A molecular switch involved in tumor formation. Angew. Chem. Int. Ed. 39, 4192–4214.10.1002/1521-3773(20001201)39:23<4192::AID-ANIE4192>3.0.CO;2-YSuche in Google Scholar
Zacharias, D.A., Violin, J.D., Newton, A.C., and Tsien, R.Y. (2002). Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296, 913–916.10.1126/science.1068539Suche in Google Scholar
©2014 by Walter de Gruyter Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Guest Editorial
- Highlight: conformational transitions in macromolecular interactions
- Single-molecule spectroscopy of unfolded proteins and chaperonin action
- Influence of the polypeptide environment next to amyloidogenic peptides on fibril formation
- Structure of large dsDNA viruses
- Functional aspects of extracellular cyclophilins
- Generic tools for conditionally altering protein abundance and phenotypes on demand
- Structural insights into calmodulin/Munc13 interaction
- Interaction of linear polyamines with negatively charged phospholipids: the effect of polyamine charge distance
- Interaction of the human N-Ras protein with lipid raft model membranes of varying degrees of complexity
- Lanthanides as substitutes for calcium ions in the activation of plant α-type phospholipase D
- Insights from reconstitution reactions of COPII vesicle formation using pure components and low mechanical perturbation
- Identification of key residues in the formate channel FocA that control import and export of formate
- Twin-arginine translocation-arresting protein regions contact TatA and TatB
- Biophysical and biochemical analysis of hnRNP K: arginine methylation, reversible aggregation and combinatorial binding to nucleic acids
- An ancient oxidoreductase making differential use of its cofactors
- Biophysical characterization of polyomavirus minor capsid proteins
- Structural basis for PTPA interaction with the invariant C-terminal tail of PP2A
- Correlating structure and ligand affinity in drug discovery: a cautionary tale involving second shell residues
- Thermodynamic signatures in macromolecular interactions involving conformational flexibility
Artikel in diesem Heft
- Frontmatter
- Guest Editorial
- Highlight: conformational transitions in macromolecular interactions
- Single-molecule spectroscopy of unfolded proteins and chaperonin action
- Influence of the polypeptide environment next to amyloidogenic peptides on fibril formation
- Structure of large dsDNA viruses
- Functional aspects of extracellular cyclophilins
- Generic tools for conditionally altering protein abundance and phenotypes on demand
- Structural insights into calmodulin/Munc13 interaction
- Interaction of linear polyamines with negatively charged phospholipids: the effect of polyamine charge distance
- Interaction of the human N-Ras protein with lipid raft model membranes of varying degrees of complexity
- Lanthanides as substitutes for calcium ions in the activation of plant α-type phospholipase D
- Insights from reconstitution reactions of COPII vesicle formation using pure components and low mechanical perturbation
- Identification of key residues in the formate channel FocA that control import and export of formate
- Twin-arginine translocation-arresting protein regions contact TatA and TatB
- Biophysical and biochemical analysis of hnRNP K: arginine methylation, reversible aggregation and combinatorial binding to nucleic acids
- An ancient oxidoreductase making differential use of its cofactors
- Biophysical characterization of polyomavirus minor capsid proteins
- Structural basis for PTPA interaction with the invariant C-terminal tail of PP2A
- Correlating structure and ligand affinity in drug discovery: a cautionary tale involving second shell residues
- Thermodynamic signatures in macromolecular interactions involving conformational flexibility