Home Functional aspects of extracellular cyclophilins
Article
Licensed
Unlicensed Requires Authentication

Functional aspects of extracellular cyclophilins

  • Henrik Hoffmann

    Henrik Hoffmann studied Biology at the Martin Luther University Halle-Wittenberg. Currently, he works on his PhD thesis about the regulation of RNA binding cyclophilins.

    and Cordelia Schiene-Fischer

    Cordelia Schiene-Fischer studied Biochemistry at the Martin Luther University Halle-Wittenberg, where she received her PhD for an analysis of the catalysis of native state isomerization in proteins in 1999. After performing postdoctoral work in Halle, she continued her work about foldases as leader of an independent research group at the Max Planck Research Unit for Enzymology of Protein Folding in Halle. Currently, she works at the Institute of Biochemistry at the Martin Luther University Halle-Wittenberg.

    EMAIL logo
Published/Copyright: April 4, 2014

Abstract

The cyclophilin family of peptidyl prolyl cis/trans isomerases includes several isoforms found to be secreted in response to different stimuli, thus existing both in the interior and the exterior of cells. The extracellular fractions of the cyclophilins CypA and CypB are involved in the control of cell-cell communication. By binding to the cell membrane receptor CD147 and cell surface heparans they elicit a variety of intracellular signaling cascades involved in inflammatory processes. Increased levels of cyclophilins in inflammatory tissues and body fluids are considered as an inflammatory response to injury. Thus, the extracellular portion of cyclophilins probably plays an important role in human diseases associated with acute or chronic inflammation like rheumatoid arthritis, sepsis, asthma and cardiovascular diseases. Specific inhibition of the cyclophilins in the extracellular space may open an effective therapeutic approach for treating inflammatory diseases.


Corresponding author: Cordelia Schiene-Fischer, Institute for Biochemistry and Biotechnology, Department of Enzymology, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle (Saale), Germany, e-mail:

About the authors

Henrik Hoffmann

Henrik Hoffmann studied Biology at the Martin Luther University Halle-Wittenberg. Currently, he works on his PhD thesis about the regulation of RNA binding cyclophilins.

Cordelia Schiene-Fischer

Cordelia Schiene-Fischer studied Biochemistry at the Martin Luther University Halle-Wittenberg, where she received her PhD for an analysis of the catalysis of native state isomerization in proteins in 1999. After performing postdoctoral work in Halle, she continued her work about foldases as leader of an independent research group at the Max Planck Research Unit for Enzymology of Protein Folding in Halle. Currently, she works at the Institute of Biochemistry at the Martin Luther University Halle-Wittenberg.

Acknowledgments

The work was supported by the Deutsche Forschungsgemeinschaft GRK 1026.

References

Allain, F., Boutillon, C., Mariller, C., and Spik, G. (1995). Selective assay for CyPA and CyPB in human blood using highly specific anti-peptide antibodies. J. Immunol. Methods 178, 113–120.10.1016/0022-1759(94)00249-VSearch in Google Scholar

Allain, F., Durieux, S., Denys, A., Carpentier, M., and Spik, G. (1999). Cyclophilin B binding to platelets supports calcium-dependent adhesion to collagen. Blood 94, 976–983.10.1182/blood.V94.3.976.415k19_976_983Search in Google Scholar

Allain, F., Vanpouille, C., Carpentier, M., Slomianny, M.C., Durieux, S., and Spik, G. (2002). Interaction with glycosaminoglycans is required for cyclophilin B to trigger integrin-mediated adhesion of peripheral blood T lymphocytes to extracellular matrix. Proc. Natl. Acad. Sci. USA 99, 2714–2719.10.1073/pnas.052284899Search in Google Scholar PubMed PubMed Central

Arai, K.I., Lee, F., Miyajima, A., Miyatake, S., Arai, N., and Yokota, T. (1990). Cytokines: coordinators of immune and inflammatory responses. Annu. Rev. Biochem. 59, 783–836.10.1146/annurev.bi.59.070190.004031Search in Google Scholar PubMed

Arora, K., Gwinn, W.M., Bower, M.A., Watson, A., Okwumabua, I., MacDonald, H.R., Bukrinsky, M.I., and Constant, S.L. (2005). Extracellular cyclophilins contribute to the regulation of inflammatory responses. J. Immunol. 175, 517–522.10.4049/jimmunol.175.1.517Search in Google Scholar PubMed PubMed Central

Bahmed, K., Henry, C., Holliday, M., Redzic, J., Ciobanu, M., Zhang, F., Weekes, C., Sclafani, R., Degregori, J., and Eisenmesser, E. (2012). Extracellular cyclophilin-A stimulates ERK1/2 phosphorylation in a cell-dependent manner but broadly stimulates nuclear factor kappa B. Cancer Cell Int. 12, 19.10.1186/1475-2867-12-19Search in Google Scholar PubMed PubMed Central

Balsley, M.A., Malesevic, M., Stemmy, E.J., Gigley, J., Jurjus, R.A., Herzog, D., Bukrinsky, M.I., Fischer, G., and Constant, S.L. (2010). A cell-impermeable cyclosporine A derivative reduces pathology in a mouse model of allergic lung inflammation. J. Immunol. 185, 7663–7670.10.4049/jimmunol.1001707Search in Google Scholar PubMed PubMed Central

Bauer, K., Kretzschmar, A.K., Cvijic, H., Blumert, C., Loffler, D., Brocke-Heidrich, K., Schiene-Fischer, C., Fischer, G., Sinz, A., Clevenger, C.V., et al. (2009). Cyclophilins contribute to Stat3 signaling and survival of multiple myeloma cells. Oncogene 28, 2784–2795.10.1038/onc.2009.142Search in Google Scholar PubMed

Baum, N., Schiene-Fischer, C., Frost, M., Schumann, M., Sabapathy, K., Ohlenschlager, O., Grosse, F., and Schlott, B. (2009). The prolyl cis/trans isomerase cyclophilin 18 interacts with the tumor suppressor p53 and modifies its functions in cell cycle regulation and apoptosis. Oncogene 28, 3915–3925.10.1038/onc.2009.248Search in Google Scholar PubMed

Bienkowska-Haba, M., Patel, H.D., and Sapp, M. (2009). Target cell cyclophilins facilitate human papillomavirus type 16 infection. PLoS Pathog. 5, e1000524.10.1371/journal.ppat.1000524Search in Google Scholar PubMed PubMed Central

Billich, A., Winkler, G., Aschauer, H., Rot, A., and Peichl, P. (1997). Presence of cyclophilin A in synovial fluids of patients with rheumatoid arthritis. J. Exp. Med. 185, 975–980.10.1084/jem.185.5.975Search in Google Scholar

Boulos, S., Meloni, B.P., Arthur, P.G., Majda, B., Bojarski, C., and Knuckey, N.W. (2007). Evidence that intracellular cyclophilin A and cyclophilin A/CD147 receptor-mediated ERK1/2 signalling can protect neurons against in vitro oxidative and ischemic injury. Neurobiol. Dis. 25, 54–64.10.1016/j.nbd.2006.08.012Search in Google Scholar

Braaten, D., Franke, E.K., and Luban, J. (1996). Cyclophilin A is required for an early step in the life cycle of human immunodeficiency virus type 1 before the initiation of reverse transcription. J. Virol. 70, 3551–3560.10.1128/jvi.70.6.3551-3560.1996Search in Google Scholar

Burbaum, J.J., Raines, R.T., Albery, W.J., and Knowles, J.R. (1989). Evolutionary optimization of the catalytic effectiveness of an enzyme. Biochemistry 28, 9293–9305.10.1021/bi00450a009Search in Google Scholar

Cadot, P., Diaz, J.F., Proost, P., Van Damme, J., Engelborghs, Y., Stevens, E.A., and Ceuppens, J.L. (2000). Purification and characterization of an 18-kd allergen of birch (Betula verrucosa) pollen: identification as a cyclophilin. J. Allergy Clin. Immunol. 105, 286–291.10.1016/S0091-6749(00)90078-2Search in Google Scholar

Carpentier, M., Allain, F., Haendler, B., Denys, A., Mariller, C., Benaissa, M., and Spik, G. (1999). Two distinct regions of cyclophilin B are involved in the recognition of a functional receptor and of glycosaminoglycans on T lymphocytes. J. Biol. Chem. 274, 10990–10998.10.1074/jbc.274.16.10990Search in Google Scholar PubMed

Carpentier, M., Allain, F., Slomianny, M.C., Durieux, S., Vanpouille, C., Haendler, B., and Spik, G. (2002). Receptor type I and type II binding regions and the peptidyl-prolyl isomerase site of cyclophilin B are required for enhancement of T-lymphocyte adhesion to fibronectin. Biochemistry 41, 5222–5229.10.1021/bi015951jSearch in Google Scholar PubMed

Castro, A.P., Carvalho, T.M., Moussatche, N., and Damaso, C.R. (2003). Redistribution of cyclophilin A to viral factories during vaccinia virus infection and its incorporation into mature particles. J. Virol. 77, 9052–9068.10.1128/JVI.77.16.9052-9068.2003Search in Google Scholar PubMed PubMed Central

Chevalier, F., Depagne, J., Hem, S., Chevillard, S., Bensimon, J., Bertrand, P., and Lebeau, J. (2012). Accumulation of cyclophilin A isoforms in conditioned medium of irradiated breast cancer cells. Proteomics 12, 1756–1766.10.1002/pmic.201100319Search in Google Scholar PubMed

Christofferson, D.E. and Yuan, J. (2010). Cyclophilin A release as a biomarker of necrotic cell death. Cell Death Differ. 17, 1942–1943.10.1038/cdd.2010.123Search in Google Scholar PubMed PubMed Central

Colgan, J., Asmal, M., Neagu, M., Yu, B., Schneidkraut, J., Lee, Y., Sokolskaja, E., Andreotti, A., and Luban, J. (2004). Cyclophilin A regulates TCR signal strength in CD4+ T cells via a proline-directed conformational switch in Itk. Immunity 21, 189–201.10.1016/j.immuni.2004.07.005Search in Google Scholar PubMed

Coppinger, J.A., Cagney, G., Toomey, S., Kislinger, T., Belton, O., McRedmond, J.P., Cahill, D.J., Emili, A., Fitzgerald, D.J., and Maguire, P.B. (2004). Characterization of the proteins released from activated platelets leads to localization of novel platelet proteins in human atherosclerotic lesions. Blood 103, 2096–2104.10.1182/blood-2003-08-2804Search in Google Scholar PubMed

Damsker, J.M., Okwumabua, I., Pushkarsky, T., Arora, K., Bukrinsky, M.I., and Constant, S.L. (2009). Targeting the chemotactic function of CD147 reduces collagen-induced arthritis. Immunology 126, 55–62.10.1111/j.1365-2567.2008.02877.xSearch in Google Scholar PubMed PubMed Central

De Canio, M., D’Aguanno, S., Sacchetti, C., Petrucci, F., Cavagni, G., Nuccetelli, M., Federici, G., Urbani, A., and Bernardini, S. (2009). Novel IgE recognized components of Lolium perenne pollen extract: comparative proteomics evaluation of allergic patients sensitization profiles. J. Proteome Res. 8, 4383–4391.10.1021/pr900315aSearch in Google Scholar PubMed

De Ceuninck, F., Allain, F., Caliez, A., Spik, G., and Vanhoutte, P.M. (2003). High binding capacity of cyclophilin B to chondrocyte heparan sulfate proteoglycans and its release from the cell surface by matrix metalloproteinases: possible role as a proinflammatory mediator in arthritis. Arthritis. Rheum. 48, 2197–2206.10.1002/art.11099Search in Google Scholar PubMed

Dear, J.W., Leelahavanichkul, A., Aponte, A., Hu, X., Constant, S.L., Hewitt, S.M., Yuen, P.S., and Star, R.A. (2007). Liver proteomics for therapeutic drug discovery: inhibition of the cyclophilin receptor CD147 attenuates sepsis-induced acute renal failure. Crit. Care Med. 35, 2319–2328.10.1097/01.CCM.0000281858.44387.A2Search in Google Scholar PubMed PubMed Central

Dear, J.W., Simpson, K.J., Nicolai, M.P., Catterson, J.H., Street, J., Huizinga, T., Craig, D.G., Dhaliwal, K., Webb, S., Bateman, D.N., et al. (2011). Cyclophilin A is a damage-associated molecular pattern molecule that mediates acetaminophen-induced liver injury. J. Immunol. 187, 3347–3352.10.4049/jimmunol.1100165Search in Google Scholar PubMed

Denys, A., Allain, F., Carpentier, M., and Spik, G. (1998). Involvement of two classes of binding sites in the interactions of cyclophilin B with peripheral blood T-lymphocytes. Biochem. J. 336, 689–697.10.1042/bj3360689Search in Google Scholar PubMed PubMed Central

Fanghanel, J. and Fischer, G. (2004). Insights into the catalytic mechanism of peptidyl prolyl cis/trans isomerases. Front. Biosci. 9, 3453–3478.10.2741/1494Search in Google Scholar PubMed

Fearon, P., Lonsdale-Eccles, A.A., Ross, O.K., Todd, C., Sinha, A., Allain, F., and Reynolds, N.J. (2011). Keratinocyte secretion of cyclophilin B via the constitutive pathway is regulated through its cyclosporin-binding site. J. Invest. Dermatol. 131, 1085–1094.10.1038/jid.2010.415Search in Google Scholar PubMed PubMed Central

Fischer, G. and Aumuller, T. (2003). Regulation of peptide bond cis/trans isomerization by enzyme catalysis and its implication in physiological processes. Rev. Physiol. Biochem. Pharmacol. 148, 105–150.10.1007/s10254-003-0011-3Search in Google Scholar

Fischer, G., Bang, H., and Mech, C. (1984). Determination of enzymatic catalysis for the cis-trans-isomerization of peptide binding in proline-containing peptides. Biomed. Biochim. Acta 43, 1101–1111.Search in Google Scholar

Fluckiger, S., Fijten, H., Whitley, P., Blaser, K., and Crameri, R. (2002). Cyclophilins, a new family of cross-reactive allergens. Eur. J. Immunol. 32, 10–17.10.1002/1521-4141(200201)32:1<10::AID-IMMU10>3.0.CO;2-ISearch in Google Scholar

Franke, E.K. and Luban, J. (1996). Inhibition of HIV-1 replication by cyclosporine A or related compounds correlates with the ability to disrupt the Gag-cyclophilin A interaction. Virology 222, 279–282.10.1006/viro.1996.0421Search in Google Scholar

Franke, E.K., Yuan, H.E., and Luban, J. (1994). Specific incorporation of cyclophilin A into HIV-1 virions. Nature 372, 359–362.10.1038/372359a0Search in Google Scholar

Frausto, S.D., Lee, E., and Tang, H. (2013). Cyclophilins as modulators of viral replication. Viruses 5, 1684–1701.10.3390/v5071684Search in Google Scholar

Fujita, C., Moriyama, T., and Ogawa, T. (2001). Identification of cyclophilin as an IgE-binding protein from carrots. Int. Arch. Allergy Immunol. 125, 44–50.10.1159/000053795Search in Google Scholar

Ge, Y.S., Teng, W.Y., and Zhang, C.D. (2009). Protective effect of cyclophilin A against Alzheimer’s amyloid beta-peptide (25–35)-induced oxidative stress in PC12 cells. Chin. Med. J. (Engl) 122, 716–724.Search in Google Scholar

Glaser, A.G., Limacher, A., Fluckiger, S., Scheynius, A., Scapozza, L., and Crameri, R. (2006). Analysis of the cross-reactivity and of the 1.5 A crystal structure of the Malassezia sympodialis Mala s 6 allergen, a member of the cyclophilin pan-allergen family. Biochem. J. 396, 41–49.10.1042/BJ20051708Search in Google Scholar

Gremese, E. and Ferraccioli, G.F. (2004). Benefit/risk of cyclosporine in rheumatoid arthritis. Clin. Exp. Rheumatol. 22, S101–107.Search in Google Scholar

Gwinn, W.M., Damsker, J.M., Falahati, R., Okwumabua, I., Kelly-Welch, A., Keegan, A.D., Vanpouille, C., Lee, J.J., Dent, L.A., Leitenberg, D., et al. (2006). Novel approach to inhibit asthma-mediated lung inflammation using anti-CD147 intervention. J. Immunol. 177, 4870–4879.10.4049/jimmunol.177.7.4870Search in Google Scholar

Hanoulle, X., Melchior, A., Sibille, N., Parent, B., Denys, A., Wieruszeski, J.M., Horvath, D., Allain, F., Lippens, G., and Landrieu, I. (2007). Structural and functional characterization of the interaction between cyclophilin B and a heparin-derived oligosaccharide. J. Biol. Chem. 282, 34148–34158.10.1074/jbc.M706353200Search in Google Scholar

Hopkins, S., DiMassimo, B., Rusnak, P., Heuman, D., Lalezari, J., Sluder, A., Scorneaux, B., Mosier, S., Kowalczyk, P., Ribeill, Y., et al. (2012). The cyclophilin inhibitor SCY-635 suppresses viral replication and induces endogenous interferons in patients with chronic HCV genotype 1 infection. J. Hepatol. 57, 47–54.10.1016/j.jhep.2012.02.024Search in Google Scholar

Horner, W.E., Reese, G., and Lehrer, S.B. (1995). Identification of the allergen Psi c 2 from the basidiomycete Psilocybe cubensis as a fungal cyclophilin. Int. Arch. Allergy Immunol. 107, 298–300.10.1159/000237007Search in Google Scholar

Ishikawa, Y., Wirz, J., Vranka, J.A., Nagata, K., and Bachinger, H.P. (2009). Biochemical characterization of the prolyl 3-hydroxylase 1.cartilage-associated protein.cyclophilin B complex. J. Biol. Chem. 284, 17641–17647.10.1074/jbc.M109.007070Search in Google Scholar

Ishikawa, Y., Vranka, J.A., Boudko, S.P., Pokidysheva, E., Mizuno, K., Zientek, K., Keene, D.R., Rashmir-Raven, A.M., Nagata, K., Winand, N.J., et al. (2012). Mutation in cyclophilin B that causes hyperelastosis cutis in American Quarter Horse does not affect peptidylprolyl cis-trans isomerase activity but shows altered cyclophilin B-protein interactions and affects collagen folding. J. Biol. Chem. 287, 22253–22265.10.1074/jbc.M111.333336Search in Google Scholar

Jin, Z.G., Melaragno, M.G., Liao, D.F., Yan, C., Haendeler, J., Suh, Y.A., Lambeth, J.D., and Berk, B.C. (2000). Cyclophilin A is a secreted growth factor induced by oxidative stress. Circ. Res. 87, 789–796.10.1161/01.RES.87.9.789Search in Google Scholar

Jin, Z.G., Lungu, A.O., Xie, L., Wang, M., Wong, C., and Berk, B.C. (2004). Cyclophilin A is a proinflammatory cytokine that activates endothelial cells. Arterioscler. Thromb. Vasc. Biol. 24, 1186–1191.10.1161/01.ATV.0000130664.51010.28Search in Google Scholar

Kim, S.H., Lessner, S.M., Sakurai, Y., and Galis, Z.S. (2004). Cyclophilin A as a novel biphasic mediator of endothelial activation and dysfunction. Am. J. Pathol. 164, 1567–1574.10.1016/S0002-9440(10)63715-7Search in Google Scholar

Kim, H., Kim, W.J., Jeon, S.T., Koh, E.M., Cha, H.S., Ahn, K.S., and Lee, W.H. (2005). Cyclophilin A may contribute to the inflammatory processes in rheumatoid arthritis through induction of matrix degrading enzymes and inflammatory cytokines from macrophages. Clin. Immunol. 116, 217–224.10.1016/j.clim.2005.05.004Search in Google Scholar PubMed

Kim, K., Kim, H., Jeong, K., Jung, M.H., Hahn, B.S., Yoon, K.S., Jin, B.K., Jahng, G.H., Kang, I., Ha, J., et al. (2012). Release of overexpressed CypB activates ERK signaling through CD147 binding for hepatoma cell resistance to oxidative stress. Apoptosis 17, 784–796.10.1007/s10495-012-0730-5Search in Google Scholar PubMed

Koletsky, A.J., Harding, M.W., and Handschumacher, R.E. (1986). Cyclophilin: distribution and variant properties in normal and neoplastic tissues. J. Immunol. 137, 1054–1059.10.4049/jimmunol.137.3.1054Search in Google Scholar

Lammers, M., Neumann, H., Chin, J.W., and James, L.C. (2010). Acetylation regulates cyclophilin A catalysis, immunosuppression and HIV isomerization. Nat. Chem. Biol. 6, 331–337.10.1038/nchembio.342Search in Google Scholar PubMed PubMed Central

Lamoureux, F., Gastinel, L.N., Mestre, E., Marquet, P., and Essig, M. (2012). Mapping cyclosporine-induced changes in protein secretion by renal cells using stable isotope labeling with amino acids in cell culture (SILAC). J. Proteomics 75, 3674–3687.10.1016/j.jprot.2012.04.024Search in Google Scholar PubMed

Lee, M.S., Zhu, Y.L., Sun, Z., Rhee, H., Jeromin, A., Roder, J., and Dannies, P.S. (2000). Accumulation of synaptosomal-associated protein of 25 kDa (SNAP-25) and other proteins associated with the secretory pathway in GH4C1 cells upon treatment with estradiol, insulin, and epidermal growth factor. Endocrinology 141, 3485–3492.10.1210/endo.141.9.7647Search in Google Scholar

Liao, D.F., Jin, Z.G., Baas, A.S., Daum, G., Gygi, S.P., Aebersold, R., and Berk, B.C. (2000). Purification and identification of secreted oxidative stress-induced factors from vascular smooth muscle cells. J. Biol. Chem. 275, 189–196.10.1074/jbc.275.1.189Search in Google Scholar

Lindborg, M., Magnusson, C.G., Zargari, A., Schmidt, M., Scheynius, A., Crameri, R., and Whitley, P. (1999). Selective cloning of allergens from the skin colonizing yeast Malassezia furfur by phage surface display technology. J. Invest. Dermatol. 113, 156–161.10.1046/j.1523-1747.1999.00661.xSearch in Google Scholar

Liu, J., Farmer, J.D. Jr., Lane, W.S., Friedman, J., Weissman, I., and Schreiber, S.L. (1991). Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66, 807–815.10.1016/0092-8674(91)90124-HSearch in Google Scholar

Liu, X., Sun, L., Yu, M., Wang, Z., Xu, C., Xue, Q., Zhang, K., Ye, X., Kitamura, Y., and Liu, W. (2009). Cyclophilin A interacts with influenza A virus M1 protein and impairs the early stage of the viral replication. Cell. Microbiol. 11, 730–741.10.1111/j.1462-5822.2009.01286.xSearch in Google Scholar

Liu, L., Li, C., Xiang, J., Dong, W., and Cao, Z. (2013). Over-expression and potential role of cyclophilin A in human periodontitis. J. Periodontal Res. 48, 615–622.10.1111/jre.12047Search in Google Scholar

Luban, J., Bossolt, K.L., Franke, E.K., Kalpana, G.V., and Goff, S.P. (1993). Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B. Cell 73, 1067–1078.10.1016/0092-8674(93)90637-6Search in Google Scholar

Malesevic, M., Kuhling, J., Erdmann, F., Balsley, M.A., Bukrinsky, M.I., Constant, S.L., and Fischer, G. (2010). A cyclosporin derivative discriminates between extracellular and intracellular cyclophilins. Angew. Chem. Int. Ed. Engl. 49, 213–215.10.1002/anie.200904529Search in Google Scholar PubMed PubMed Central

Malesevic, M., Gutknecht, D., Prell, E., Klein, C., Schumann, M., Nowak, R.A., Simon, J.C., Schiene-Fischer, C., and Saalbach, A. (2013). Anti-inflammatory effects of extracellular cyclosporins are exclusively mediated by CD147. J. Med. Chem. 56, 7302–7311.10.1021/jm4007577Search in Google Scholar PubMed

Marcant, A., Denys, A., Melchior, A., Martinez, P., Deligny, A., Carpentier, M., and Allain, F. (2012). Cyclophilin B attenuates the expression of TNF-alpha in lipopolysaccharide-stimulated macrophages through the induction of B cell lymphoma-3. J. Immunol. 189, 2023–2032.10.4049/jimmunol.1102803Search in Google Scholar PubMed

Mariller, C., Allain, F., Kouach, M., and Spik, G. (1996). Evidence that human milk isolated cyclophilin B corresponds to a truncated form. Biochim. Biophys. Acta 1293, 31–38.10.1016/0167-4838(95)00230-8Search in Google Scholar

Marini, J.C., Cabral, W.A., Barnes, A.M., and Chang, W. (2007). Components of the collagen prolyl 3-hydroxylation complex are crucial for normal bone development. Cell Cycle 6, 1675–1681.10.4161/cc.6.14.4474Search in Google Scholar PubMed

Marzban, G., Herndl, A., Kolarich, D., Maghuly, F., Mansfeld, A., Hemmer, W., Katinger, H., and Laimer, M. (2008). Identification of four IgE-reactive proteins in raspberry (Rubus ideaeus L.). Mol. Nutr. Food Res. 52, 1497–1506.10.1002/mnfr.200700518Search in Google Scholar PubMed

Mauri, P., Scarpa, A., Nascimbeni, A.C., Benazzi, L., Parmagnani, E., Mafficini, A., Della Peruta, M., Bassi, C., Miyazaki, K., and Sorio, C. (2005). Identification of proteins released by pancreatic cancer cells by multidimensional protein identification technology: a strategy for identification of novel cancer markers. FASEB J. 19, 1125–1127.10.1096/fj.04-3000fjeSearch in Google Scholar PubMed

Meunier, L., Usherwood, Y.K., Chung, K.T., and Hendershot, L.M. (2002). A subset of chaperones and folding enzymes form multiprotein complexes in endoplasmic reticulum to bind nascent proteins. Mol. Biol. Cell 13, 4456–4469.10.1091/mbc.e02-05-0311Search in Google Scholar PubMed PubMed Central

Muramatsu, T. and Miyauchi, T. (2003). Basigin (CD147): a multifunctional transmembrane protein involved in reproduction, neural function, inflammation and tumor invasion. Histol. Histopathol. 18, 981–987.Search in Google Scholar

Nickel, W. and Rabouille, C. (2009). Mechanisms of regulated unconventional protein secretion. Nat. Rev. Mol. Cell Biol. 10, 148–155.10.1038/nrm2617Search in Google Scholar PubMed

Nigro, P., Satoh, K., O’Dell, M.R., Soe, N.N., Cui, Z., Mohan, A., Abe, J., Alexis, J.D., Sparks, J.D., and Berk, B.C. (2011). Cyclophilin A is an inflammatory mediator that promotes atherosclerosis in apolipoprotein E-deficient mice. J. Exp. Med. 208, 53–66.10.1084/jem.20101174Search in Google Scholar PubMed PubMed Central

Nishioku, T., Dohgu, S., Koga, M., Machida, T., Watanabe, T., Miura, T., Tsumagari, K., Terasawa, M., Yamauchi, A., and Kataoka, Y. (2012). Cyclophilin A secreted from fibroblast-like synoviocytes is involved in the induction of CD147 expression in macrophages of mice with collagen-induced arthritis. J. Inflamm. (Lond) 9, 44.10.1186/1476-9255-9-44Search in Google Scholar PubMed PubMed Central

Ohe, Y., Ishikawa, K., Itoh, Z., and Tatemoto, K. (1996). Cultured leptomeningeal cells secrete cerebrospinal fluid proteins. J. Neurochem. 67, 964–971.10.1046/j.1471-4159.1996.67030964.xSearch in Google Scholar PubMed

Pakula, R., Melchior, A., Denys, A., Vanpouille, C., Mazurier, J., and Allain, F. (2007). Syndecan-1/CD147 association is essential for cyclophilin B-induced activation of p44/42 mitogen-activated protein kinases and promotion of cell adhesion and chemotaxis. Glycobiology 17, 492–503.10.1093/glycob/cwm009Search in Google Scholar PubMed

Pan, H., Luo, C., Li, R., Qiao, A., Zhang, L., Mines, M., Nyanda, A.M., Zhang, J., and Fan, G.H. (2008). Cyclophilin A is required for CXCR4-mediated nuclear export of heterogeneous nuclear ribonucleoprotein A2, activation and nuclear translocation of ERK1/2, and chemotactic cell migration. J. Biol. Chem. 283, 623–637.10.1074/jbc.M704934200Search in Google Scholar PubMed

Payeli, S.K., Schiene-Fischer, C., Steffel, J., Camici, G.G., Rozenberg, I., Luscher, T.F., and Tanner, F.C. (2008). Cyclophilin A differentially activates monocytes and endothelial cells: role of purity, activity, and endotoxin contamination in commercial preparations. Atherosclerosis 197, 564–571.10.1016/j.atherosclerosis.2007.08.025Search in Google Scholar PubMed

Pazouki, N., Sankian, M., Leung, P.T., Nejadsattari, T., Khavari-Nejad, R.A., and Varasteh, A.R. (2009). Identification of cyclophilin as a novel allergen from Platanus orientalis pollens by mass spectrometry. J. Biosci. Bioeng. 107, 215–217.10.1016/j.jbiosc.2008.10.016Search in Google Scholar PubMed

Peng, H., Vijayakumar, S., Schiene-Fischer, C., Li, H., Purkerson, J.M., Malesevic, M., Liebscher, J., Al-Awqati, Q., and Schwartz, G.J. (2009). Secreted cyclophilin A, a peptidylprolyl cis-trans isomerase, mediates matrix assembly of hensin, a protein implicated in epithelial differentiation. J. Biol. Chem. 284, 6465–6475.10.1074/jbc.M808964200Search in Google Scholar PubMed PubMed Central

Prell, E., Kahlert, V., Rucknagel, K.P., Malesevic, M., and Fischer, G. (2013). Fine tuning the inhibition profile of cyclosporine A by derivatization of the MeBmt residue. Chembiochem 14, 63–65.10.1002/cbic.201200621Search in Google Scholar PubMed

Price, E.R., Zydowsky, L.D., Jin, M.J., Baker, C.H., McKeon, F.D., and Walsh, C.T. (1991). Human cyclophilin B: a second cyclophilin gene encodes a peptidyl-prolyl isomerase with a signal sequence. Proc. Natl. Acad. Sci. USA 88, 1903–1907.10.1073/pnas.88.5.1903Search in Google Scholar PubMed PubMed Central

Price, E.R., Jin, M., Lim, D., Pati, S., Walsh, C.T., and McKeon, F.D. (1994). Cyclophilin B trafficking through the secretory pathway is altered by binding of cyclosporin A. Proc. Natl. Acad. Sci. USA 91, 3931–3935.10.1073/pnas.91.9.3931Search in Google Scholar PubMed PubMed Central

Pushkarsky, T., Zybarth, G., Dubrovsky, L., Yurchenko, V., Tang, H., Guo, H., Toole, B., Sherry, B., and Bukrinsky, M. (2001). CD147 facilitates HIV-1 infection by interacting with virus-associated cyclophilin A. Proc. Natl. Acad. Sci. USA 98, 6360–6365.10.1073/pnas.111583198Search in Google Scholar PubMed PubMed Central

Ralhan, R., Masui, O., Desouza, L.V., Matta, A., Macha, M., and Siu, K.W. (2011). Identification of proteins secreted by head and neck cancer cell lines using LC-MS/MS: strategy for discovery of candidate serological biomarkers. Proteomics 11, 2363–2376.10.1002/pmic.201000186Search in Google Scholar PubMed

Ramachandran, S. and Kartha, C.C. (2012). Cyclophilin-A: a potential screening marker for vascular disease in type-2 diabetes. Can. J. Physiol. Pharmacol. 90, 1005–1015.10.1139/y2012-038Search in Google Scholar PubMed

Rycyzyn, M.A. and Clevenger, C.V. (2000). Role of cyclophilins in somatolactogenic action. Ann. N. Y. Acad. Sci. 917, 514–521.10.1111/j.1749-6632.2000.tb05416.xSearch in Google Scholar PubMed

Rycyzyn, M.A. and Clevenger, C.V. (2002). The intranuclear prolactin/cyclophilin B complex as a transcriptional inducer. Proc. Natl. Acad. Sci. USA 99, 6790–6795.10.1073/pnas.092160699Search in Google Scholar PubMed PubMed Central

Saphire, A.C., Bobardt, M.D., and Gallay, P.A. (1999). Host cyclophilin A mediates HIV-1 attachment to target cells via heparans. EMBO J. 18, 6771–6785.10.1093/emboj/18.23.6771Search in Google Scholar PubMed PubMed Central

Saphire, A.C., Bobardt, M.D., and Gallay, P.A. (2002). Cyclophilin a plays distinct roles in human immunodeficiency virus type 1 entry and postentry events, as revealed by spinoculation. J. Virol. 76, 4671–4677.10.1128/JVI.76.9.4671-4677.2002Search in Google Scholar PubMed PubMed Central

Satoh, K., Matoba, T., Suzuki, J., O’Dell, M.R., Nigro, P., Cui, Z., Mohan, A., Pan, S., Li, L., Jin, Z.G., et al. (2008). Cyclophilin A mediates vascular remodeling by promoting inflammation and vascular smooth muscle cell proliferation. Circulation 117, 3088–3098.10.1161/CIRCULATIONAHA.107.756106Search in Google Scholar PubMed PubMed Central

Satoh, K., Nigro, P., Matoba, T., O’Dell, M.R., Cui, Z., Shi, X., Mohan, A., Yan, C., Abe, J., Illig, K.A., et al. (2009). Cyclophilin A enhances vascular oxidative stress and the development of angiotensin II-induced aortic aneurysms. Nat. Med. 15, 649–656.10.1038/nm.1958Search in Google Scholar PubMed PubMed Central

Satoh, K., Nigro, P., Zeidan, A., Soe, N.N., Jaffre, F., Oikawa, M., O’Dell, M.R., Cui, Z., Menon, P., Lu, Y., et al. (2011). Cyclophilin A promotes cardiac hypertrophy in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 31, 1116–1123.10.1161/ATVBAHA.110.214601Search in Google Scholar PubMed PubMed Central

Satoh, K., Fukumoto, Y., Sugimura, K., Miura, Y., Aoki, T., Nochioka, K., Tatebe, S., Miyamichi-Yamamoto, S., Shimizu, T., Osaki, S., et al. (2013). Plasma cyclophilin A is a novel biomarker for coronary artery disease. Circ. J. 77, 447–455.10.1253/circj.CJ-12-0805Search in Google Scholar

Schlegel, J., Redzic, J.S., Porter, C.C., Yurchenko, V., Bukrinsky, M., Labeikovsky, W., Armstrong, G.S., Zhang, F., Isern, N.G., DeGregori, J., et al. (2009). Solution characterization of the extracellular region of CD147 and its interaction with its enzyme ligand cyclophilin A. J. Mol. Biol. 391, 518–535.10.1016/j.jmb.2009.05.080Search in Google Scholar PubMed PubMed Central

Schreiber, G. and Walter, M.R. (2010). Cytokine-receptor interactions as drug targets. Curr. Opin. Chem. Biol. 14, 511–519.10.1016/j.cbpa.2010.06.165Search in Google Scholar PubMed PubMed Central

Seizer, P., Schonberger, T., Schott, M., Lang, M.R., Langer, H.F., Bigalke, B., Kramer, B.F., Borst, O., Daub, K., Heidenreich, O., et al. (2010). EMMPRIN and its ligand cyclophilin A regulate MT1-MMP, MMP-9 and M-CSF during foam cell formation. Atherosclerosis 209, 51–57.10.1016/j.atherosclerosis.2009.08.029Search in Google Scholar PubMed

Seizer, P., Ochmann, C., Schonberger, T., Zach, S., Rose, M., Borst, O., Klingel, K., Kandolf, R., MacDonald, H.R., Nowak, R.A., et al. (2011). Disrupting the EMMPRIN (CD147)-cyclophilin A interaction reduces infarct size and preserves systolic function after myocardial ischemia and reperfusion. Arterioscler. Thromb. Vasc. Biol. 31, 1377–1386.10.1161/ATVBAHA.111.225771Search in Google Scholar PubMed PubMed Central

Seizer, P., Klingel, K., Sauter, M., Westermann, D., Ochmann, C., Schonberger, T., Schleicher, R., Stellos, K., Schmidt, E.M., Borst, O., et al. (2012). Cyclophilin A affects inflammation, virus elimination and myocardial fibrosis in coxsackievirus B3-induced myocarditis. J. Mol. Cell. Cardiol. 53, 6–14.10.1016/j.yjmcc.2012.03.004Search in Google Scholar PubMed

Seko, Y., Fujimura, T., Taka, H., Mineki, R., Murayama, K., and Nagai, R. (2004). Hypoxia followed by reoxygenation induces secretion of cyclophilin A from cultured rat cardiac myocytes. Biochem. Biophys. Res. Commun. 317, 162–168.10.1016/j.bbrc.2004.03.021Search in Google Scholar PubMed

Sherry, B., Yarlett, N., Strupp, A., and Cerami, A. (1992). Identification of cyclophilin as a proinflammatory secretory product of lipopolysaccharide-activated macrophages. Proc. Natl. Acad. Sci. USA 89, 3511–3515.10.1073/pnas.89.8.3511Search in Google Scholar PubMed PubMed Central

Sherry, B., Zybarth, G., Alfano, M., Dubrovsky, L., Mitchell, R., Rich, D., Ulrich, P., Bucala, R., Cerami, A., and Bukrinsky, M. (1998). Role of cyclophilin A in the uptake of HIV-1 by macrophages and T lymphocytes. Proc. Natl. Acad. Sci. USA 95, 1758–1763.10.1073/pnas.95.4.1758Search in Google Scholar PubMed PubMed Central

Sihra, B.S., Kon, O.M., Durham, S.R., Walker, S., Barnes, N.C., and Kay, A.B. (1997). Effect of cyclosporin A on the allergen-induced late asthmatic reaction. Thorax 52, 447–452.10.1136/thx.52.5.447Search in Google Scholar PubMed PubMed Central

Soe, N.N., Sowden, M., Baskaran, P., Kim, Y., Nigro, P., Smolock, E.M., and Berk, B.C. (2014). Acetylation of cyclophilin A is required for its secretion and vascular cell activation. Cardiovasc. Res 101, 444–453.10.1093/cvr/cvt268Search in Google Scholar PubMed PubMed Central

Song, F., Zhang, X., Ren, X.B., Zhu, P., Xu, J., Wang, L., Li, Y.F., Zhong, N., Ru, Q., Zhang, D.W., et al. (2011). Cyclophilin A (CyPA) induces chemotaxis independent of its peptidylprolyl cis-trans isomerase activity: direct binding between CyPA and the ectodomain of CD147. J. Biol. Chem. 286, 8197–8203.10.1074/jbc.C110.181347Search in Google Scholar PubMed PubMed Central

Spisni, E., Valerii, M.C., Manerba, M., Strillacci, A., Polazzi, E., Mattia, T., Griffoni, C., and Tomasi, V. (2009). Effect of copper on extracellular levels of key pro-inflammatory molecules in hypothalamic GN11 and primary neurons. Neurotoxicology 30, 605–612.10.1016/j.neuro.2009.03.005Search in Google Scholar PubMed

Stemmy, E.J., Balsley, M.A., Jurjus, R.A., Damsker, J.M., Bukrinsky, M.I., and Constant, S.L. (2011a). Blocking cyclophilins in the chronic phase of asthma reduces the persistence of leukocytes and disease reactivation. Am. J. Respir. Cell Mol. Biol. 45, 991–998.10.1165/rcmb.2011-0007OCSearch in Google Scholar PubMed PubMed Central

Stemmy, E.J., Benton, A.S., Lerner, J., Alcala, S., Constant, S.L., and Freishtat, R.J. (2011b). Extracellular cyclophilin levels associate with parameters of asthma in phenotypic clusters. J. Asthma 48, 986–993.10.3109/02770903.2011.623334Search in Google Scholar PubMed PubMed Central

Suzuki, J., Jin, Z.G., Meoli, D.F., Matoba, T., and Berk, B.C. (2006). Cyclophilin A is secreted by a vesicular pathway in vascular smooth muscle cells. Circ. Res. 98, 811–817.10.1161/01.RES.0000216405.85080.a6Search in Google Scholar PubMed

Tegeder, I., Schumacher, A., John, S., Geiger, H., Geisslinger, G., Bang, H., and Brune, K. (1997). Elevated serum cyclophilin levels in patients with severe sepsis. J. Clin. Immunol. 17, 380–386.10.1023/A:1027364207544Search in Google Scholar

Thali, M., Bukovsky, A., Kondo, E., Rosenwirth, B., Walsh, C.T., Sodroski, J., and Gottlinger, H.G. (1994). Functional association of cyclophilin A with HIV-1 virions. Nature 372, 363–365.10.1038/372363a0Search in Google Scholar PubMed

Tian, X., Zhao, C., Zhu, H., She, W., Zhang, J., Liu, J., Li, L., Zheng, S., Wen, Y.M., and Xie, Y. (2010). Hepatitis B virus (HBV) surface antigen interacts with and promotes cyclophilin a secretion: possible link to pathogenesis of HBV infection. J. Virol. 84, 3373–3381.10.1128/JVI.02555-09Search in Google Scholar PubMed PubMed Central

Tien, C.L., Lin, C.H., Lin, T.H., Wen, F.C., Su, C.W., Fan, S.S., and Hsieh, M. (2012). Secreted cyclophilin A induction during embryo implantation in a model of human trophoblast-endometrial epithelium interaction. Eur. J. Obstet. Gynecol. Reprod. Biol. 164, 55–59.10.1016/j.ejogrb.2012.05.027Search in Google Scholar PubMed

Trachtenberg, A., Pushkarsky, T., Heine, S., Constant, S., Brichacek, B., and Bukrinsky, M. (2011). The level of CD147 expression correlates with cyclophilin-induced signalling and chemotaxis. BMC Res. Notes 4, 396.10.1186/1756-0500-4-396Search in Google Scholar PubMed PubMed Central

Tribouillard-Tanvier, D., Carroll, J.A., Moore, R.A., Striebel, J.F., and Chesebro, B. (2012). Role of cyclophilin A from brains of prion-infected mice in stimulation of cytokine release by microglia and astroglia in vitro. J. Biol. Chem. 287, 4628–4639.10.1074/jbc.M111.269480Search in Google Scholar PubMed PubMed Central

van Beers, J.J., Schwarte, C.M., Stammen-Vogelzangs, J., Oosterink, E., Bozic, B., and Pruijn, G.J. (2013). The rheumatoid arthritis synovial fluid citrullinome reveals novel citrullinated epitopes in apolipoprotein E, myeloid nuclear differentiation antigen, and beta-actin. Arthritis. Rheum. 65, 69–80.10.1002/art.37720Search in Google Scholar PubMed

van Vliet, C., Thomas, E.C., Merino-Trigo, A., Teasdale, R.D., and Gleeson, P.A. (2003). Intracellular sorting and transport of proteins. Prog. Biophys. Mol. Biol. 83, 1–45.10.1016/S0079-6107(03)00019-1Search in Google Scholar

Vanpouille, C., Denys, A., Carpentier, M., Pakula, R., Mazurier, J., and Allain, F. (2004). Octasaccharide is the minimal length unit required for efficient binding of cyclophilin B to heparin and cell surface heparan sulphate. Biochem. J. 382, 733–740.10.1042/BJ20031453Search in Google Scholar PubMed PubMed Central

Wang, P., Mariman, E., Keijer, J., Bouwman, F., Noben, J.P., Robben, J., and Renes, J. (2004). Profiling of the secreted proteins during 3T3-L1 adipocyte differentiation leads to the identification of novel adipokines. Cell. Mol. Life Sci. 61, 2405–2417.10.1007/s00018-004-4256-zSearch in Google Scholar PubMed

Wang, L., Wang, C.H., Jia, J.F., Ma, X.K., Li, Y., Zhu, H.B., Tang, H., Chen, Z.N., and Zhu, P. (2010). Contribution of cyclophilin A to the regulation of inflammatory processes in rheumatoid arthritis. J. Clin. Immunol. 30, 24–33.10.1007/s10875-009-9329-1Search in Google Scholar PubMed

Wang, C.H., Dai, J.Y., Wang, L., Jia, J.F., Zheng, Z.H., Ding, J., Chen, Z.N., and Zhu, P. (2011). Expression of CD147 (EMMPRIN) on neutrophils in rheumatoid arthritis enhances chemotaxis, matrix metalloproteinase production and invasiveness of synoviocytes. J. Cell. Mol. Med. 15, 850–860.10.1111/j.1582-4934.2010.01084.xSearch in Google Scholar PubMed PubMed Central

Wang, L., Jia, J., Wang, C., Ma, X., Liao, C., Fu, Z., Wang, B., Yang, X., Zhu, P., Li, Y., et al. (2013). Inhibition of synovitis and joint destruction by a new single domain antibody specific for cyclophilin A in two different mouse models of rheumatoid arthritis. Arthritis Res. Ther. 15, R208.10.1186/ar4401Search in Google Scholar PubMed PubMed Central

Watanabe, A., Yoneda, M., Ikeda, F., Terao-Muto, Y., Sato, H., and Kai, C. (2010). CD147/EMMPRIN acts as a functional entry receptor for measles virus on epithelial cells. J. Virol. 84, 4183–4193.10.1128/JVI.02168-09Search in Google Scholar PubMed PubMed Central

Watashi, K., Sluder, A., Daito, T., Matsunaga, S., Ryo, A., Nagamori, S., Iwamoto, M., Nakajima, S., Tsukuda, S., Borroto-Esoda, K., et al. (2013). Cyclosporin A and its analogs inhibit hepatitis B virus entry into cultured hepatocytes through targeting a membrane transporter NTCP. Hepatology. DOI: 10.1002/hep.26982.10.1002/hep.26982Search in Google Scholar PubMed PubMed Central

Wei, Y., Jinchuan, Y., Yi, L., Jun, W., Zhongqun, W., and Cuiping, W. (2013). Antiapoptotic and proapoptotic signaling of cyclophilin A in endothelial cells. Inflammation 36, 567–572.10.1007/s10753-012-9578-7Search in Google Scholar PubMed

West, G.M., Tucker, C.L., Xu, T., Park, S.K., Han, X., Yates, J.R. 3rd, and Fitzgerald, M.C. (2010). Quantitative proteomics approach for identifying protein-drug interactions in complex mixtures using protein stability measurements. Proc. Natl. Acad. Sci. USA 107, 9078–9082.10.1073/pnas.1000148107Search in Google Scholar PubMed PubMed Central

Wilmes, A., Limonciel, A., Aschauer, L., Moenks, K., Bielow, C., Leonard, M.O., Hamon, J., Carpi, D., Ruzek, S., Handler, A., et al. (2013). Application of integrated transcriptomic, proteomic and metabolomic profiling for the delineation of mechanisms of drug induced cell stress. J Proteomics 79, 180–194.10.1016/j.jprot.2012.11.022Search in Google Scholar PubMed

Yamaguchi, T., Yokokawa, M., Suzuki, M., Higashide, S., Katoh, Y., Sugiyama, S., and Misaki, T. (2000). The effect of immunosuppression on aortic dilatation in a rat aneurysm model. Surg. Today 30, 1093–1099.10.1007/s005950070007Search in Google Scholar PubMed

Yan, J., Zang, X., Chen, R., Yuan, W., Gong, J., Wang, C., and Li, Y. (2012). The clinical implications of increased cyclophilin A levels in patients with acute coronary syndromes. Clin. Chim. Acta 413, 691–695.10.1016/j.cca.2011.12.009Search in Google Scholar PubMed

Yan, J., Li, Y., Wang, C., Wang, Z., and Yuan, W. (2013). Regression of atherosclerotic plaques after lentivirus-mediated RNA interference of cyclophilin A in ApoE(-/-) mice. Int. J. Cardiol. 169, e87–90.10.1016/j.ijcard.2013.10.039Search in Google Scholar PubMed

Yang, H., Li, M., Chai, H., Yan, S., Lin, P., Lumsden, A.B., Yao, Q. and Chen, C. (2005). Effects of cyclophilin A on cell proliferation and gene expressions in human vascular smooth muscle cells and endothelial cells. J. Surg. Res. 123, 312–319.10.1016/j.jss.2004.08.026Search in Google Scholar PubMed

Yang, H., Chen, J., Yang, J., Qiao, S., Zhao, S., and Yu, L. (2007). Cyclophilin A is upregulated in small cell lung cancer and activates ERK1/2 signal. Biochem. Biophys. Res. Commun. 361, 763–767.10.1016/j.bbrc.2007.07.085Search in Google Scholar PubMed

Yang, Y., Lu, N., Zhou, J., Chen, Z.N., and Zhu, P. (2008). Cyclophilin A up-regulates MMP-9 expression and adhesion of monocytes/macrophages via CD147 signalling pathway in rheumatoid arthritis. Rheumatology (Oxf.) 47, 1299–1310.10.1093/rheumatology/ken225Search in Google Scholar PubMed PubMed Central

Yuan, W., Ge, H., and He, B. (2010). Pro-inflammatory activities induced by CyPA-EMMPRIN interaction in monocytes. Atherosclerosis 213, 415–421.10.1016/j.atherosclerosis.2010.09.033Search in Google Scholar PubMed

Yurchenko, V., O’Connor, M., Dai, W.W., Guo, H., Toole, B., Sherry, B., and Bukrinsky, M. (2001). CD147 is a signaling receptor for cyclophilin B. Biochem. Biophys. Res. Commun. 288, 786–788.10.1006/bbrc.2001.5847Search in Google Scholar PubMed

Yurchenko, V., Zybarth, G., O’Connor, M., Dai, W.W., Franchin, G., Hao, T., Guo, H., Hung, H.C., Toole, B., Gallay, P., et al. (2002). Active site residues of cyclophilin A are crucial for its signaling activity via CD147. J. Biol. Chem. 277, 22959–22965.10.1074/jbc.M201593200Search in Google Scholar PubMed

Yurchenko, V., Constant, S., and Bukrinsky, M. (2006). Dealing with the family: CD147 interactions with cyclophilins. Immunology 117, 301–309.10.1111/j.1365-2567.2005.02316.xSearch in Google Scholar PubMed PubMed Central

Zeng, R.Z., Kim, H.G., Kim, N.R., Lee, H.Y., Jung, B.J., Ko, M.Y., Lee, S.Y., and Chung, D.K. (2010). Protein expression changes in human monocytic THP-1 cells treated with lipoteichoic acid from Lactobacillus plantarum and Staphylococcus aureus. Mol. Cells 29, 585–594.10.1007/s10059-010-0073-4Search in Google Scholar PubMed

Zhang, P.H., Yang, L.R., Li, L.L., Zeng, J.Z., Ren, L.C., Liang, P.F., and Huang, X.Y. (2010). Proteomic change of peripheral lymphocytes from scald injury and Pseudomonas aeruginosa sepsis in rabbits. Burns 36, 82–88.10.1016/j.burns.2009.03.006Search in Google Scholar PubMed

Zhou, D., Mei, Q., Li, J., and He, H. (2012). Cyclophilin A and viral infections. Biochem. Biophys. Res. Commun. 424, 647–650.10.1016/j.bbrc.2012.07.024Search in Google Scholar PubMed PubMed Central

Zhu, P., Ding, J., Zhou, J., Dong, W.J., Fan, C.M., and Chen, Z.N. (2005). Expression of CD147 on monocytes/macrophages in rheumatoid arthritis: its potential role in monocyte accumulation and matrix metalloproteinase production. Arthritis Res. Ther. 7, R1023–1033.10.1186/ar1778Search in Google Scholar PubMed PubMed Central

Zhu, C., Wang, X., Deinum, J., Huang, Z., Gao, J., Modjtahedi, N., Neagu, M.R., Nilsson, M., Eriksson, P.S., Hagberg, H., et al. (2007). Cyclophilin A participates in the nuclear translocation of apoptosis-inducing factor in neurons after cerebral hypoxia-ischemia. J. Exp. Med. 204, 1741–1748.10.1084/jem.20070193Search in Google Scholar PubMed PubMed Central

Received: 2014-2-13
Accepted: 2014-3-27
Published Online: 2014-4-4
Published in Print: 2014-7-1

©2014 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Guest Editorial
  3. Highlight: conformational transitions in macromolecular interactions
  4. Single-molecule spectroscopy of unfolded proteins and chaperonin action
  5. Influence of the polypeptide environment next to amyloidogenic peptides on fibril formation
  6. Structure of large dsDNA viruses
  7. Functional aspects of extracellular cyclophilins
  8. Generic tools for conditionally altering protein abundance and phenotypes on demand
  9. Structural insights into calmodulin/Munc13 interaction
  10. Interaction of linear polyamines with negatively charged phospholipids: the effect of polyamine charge distance
  11. Interaction of the human N-Ras protein with lipid raft model membranes of varying degrees of complexity
  12. Lanthanides as substitutes for calcium ions in the activation of plant α-type phospholipase D
  13. Insights from reconstitution reactions of COPII vesicle formation using pure components and low mechanical perturbation
  14. Identification of key residues in the formate channel FocA that control import and export of formate
  15. Twin-arginine translocation-arresting protein regions contact TatA and TatB
  16. Biophysical and biochemical analysis of hnRNP K: arginine methylation, reversible aggregation and combinatorial binding to nucleic acids
  17. An ancient oxidoreductase making differential use of its cofactors
  18. Biophysical characterization of polyomavirus minor capsid proteins
  19. Structural basis for PTPA interaction with the invariant C-terminal tail of PP2A
  20. Correlating structure and ligand affinity in drug discovery: a cautionary tale involving second shell residues
  21. Thermodynamic signatures in macromolecular interactions involving conformational flexibility
Downloaded on 8.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2014-0125/html?lang=en
Scroll to top button