Abstract
The Rho GTPases are essential regulators of basic cellular processes, including cell migration, cell contraction and cell division. Most studies still involve just the three canonical members, RhoA, Rac1 and Cdc42, although the Rho GTPases comprise at least 20 members. The aim of this review is to highlight some of the recent advances in our knowledge regarding the less-studied Rho members, with the focus on RhoD and Rif. The phenotypic alterations to cell behaviour that are triggered by RhoD and Rif suggest that they have unique impacts on cytoskeletal dynamics that distinguish them from the well-studied members of the Rho GTPases. In addition, RhoD has a role in the regulation of intracellular transport of vesicles. Taken together, the available data indicate that RhoD and Rif have functions as master regulators in the integration of cytoskeletal reorganisation and membrane trafficking.
Acknowledgments
The author is supported by the Karolinska Institutet, the Swedish Cancer Society, and the Swedish Research Council.
References
Aspenström, P., Fransson, Å., and Saras, J. (2004). The Rho GTPases have diverse effects on the organization of the actin filament system. Biochem. J. 377, 327–337.10.1042/bj20031041Suche in Google Scholar PubMed PubMed Central
Aspenström, P., Ruusala, A., and Pacholsky, D. (2007). Taking the Rho GTPases to the next level: the cellular function of the atypical Rho GTPases. Exp. Cell Res. 313, 3673–3679.10.1016/j.yexcr.2007.07.022Suche in Google Scholar PubMed
Bailik, S. and Kimchi, A. (2006). The death-associated protein kinases: structure, function, and beyond. Annu. Rev. Biochem. 75, 189–210.10.1146/annurev.biochem.75.103004.142615Suche in Google Scholar PubMed
Barrios-Rodiles, M., Brown, K.R., Ozdamar, B., Bose, R., Liu, Z., Donovan, R.S., Shinjo, F., Liu, Y., Dembowy, J., Taylor, I.W., et al. (2005). High-throughput mapping of a dynamic signaling network in mammalian cells. Science 307, 1621–1625.10.1126/science.1105776Suche in Google Scholar PubMed
Boureux, A., Vignal, E., Faure, S., and Fort, P. (2007). Evolution of the Rho family of Ras-like GTPases in eukaryotes. Mol. Biol. Evol. 24, 203–216.10.1093/molbev/msl145Suche in Google Scholar PubMed PubMed Central
Brognard, J., Zhang, Y.-W., Puto, L.A., and Hunter, T. (2011). Cancer-associated loss-of-function mutations implicate DAPK3 as a tumor-suppressing kinase. Cancer Res. 71, 3152–3161.10.1158/0008-5472.CAN-10-3543Suche in Google Scholar PubMed PubMed Central
Campellone, K.G., Webb, N.J., Znameroski, E.A., and Welch, M.D. (2008). WHAMM is an Arp2/3 complex activator that binds microtubules and functions in ER to Golgi transport. Cell 134, 148–161.10.1016/j.cell.2008.05.032Suche in Google Scholar PubMed PubMed Central
Chardin, P. (2006). Function and regulation of Rnd proteins. Nat. Rev. Mol. Cell Biol. 7, 54–62.10.1038/nrm1788Suche in Google Scholar PubMed
Chavrier, P., Simins, K., and Zerial, M. (1992). The complexity of the Rab and Rho GTP-binding protein subfamilies revealed by a PCR cloning approach. Gene 112, 261–264.10.1016/0378-1119(92)90387-5Suche in Google Scholar PubMed
Colicelli, J. (2004). Human RAS superfamily proteins and related GTPases. Sci STKE 250, RE13.10.1126/stke.2502004re13Suche in Google Scholar PubMed PubMed Central
Cook, D.R., Rossman, K.L., and Der, C.J. (2013). Rho guanine nucleotide exchange factors: regulators of Rho GTPase activity in development and disease. Oncogene. DOI: 10.1038/onc.2013.362 [Epub ahead of print].10.1038/onc.2013.362Suche in Google Scholar PubMed PubMed Central
Ellis, S. and Mellor, H. (2000). The novel Rho-family GTPase Rif regulates coordinated actin-based membrane rearrangements. Curr. Biol. 10, 1387–1390.10.1016/S0960-9822(00)00777-6Suche in Google Scholar
Espinosa, E.J., Calero, M., Sridevi, K., and Pfeffer, S.R. (2009). RhoBTB3: a Rho GTPase-family ATPase required for endosome to Golgi transport. Cell 137, 938–948.10.1016/j.cell.2009.03.043Suche in Google Scholar PubMed PubMed Central
Fan, L., Pellegrin, S., Scott A., and Mellor, H. (2010). The small GTPase Rif is an alternative trigger for the formation of actin stress fibers in epithelial cells. J. Cell Sci. 123, 1247–1252.10.1242/jcs.061754Suche in Google Scholar PubMed PubMed Central
Gad, A.K.B. and Aspenström, P. (2010). Rif proteins take to the RhoD: Rho GTPases at the crossroads of actin dynamics and membrane trafficking. Cell. Signal. 22, 183–189.10.1016/j.cellsig.2009.10.001Suche in Google Scholar PubMed
Gad, A.K.B., Nehru, V., Ruusala, A., and Aspenström, P. (2012). RhoD regulates cytoskeletal dynamics via the actin-nucleation-promoting factor WHAMM. Mol. Biol. Cell 23, 4807–4819.10.1091/mbc.e12-07-0555Suche in Google Scholar PubMed PubMed Central
Garcia-Mata, R., Boulter, E., and Burridge, K. (2011). The ‘invisible hand’: regulation of RHO GTPases by RHO-GDIs. Nat. Rev. Mol. Cell Biol. 12, 493–504.10.1038/nrm3153Suche in Google Scholar PubMed PubMed Central
Gasman, S., Kalaidzidis, Y., and Zerial, M. (2003). RhoD regulates endosome dynamics through Diaphanous-related formin and Src kinase. Nat. Cell Biol. 5, 195–204.10.1038/ncb935Suche in Google Scholar PubMed
Goggs, R., Savage, J.S., Mellor, H., and Poole, A.W. (2013). The small GTPase Rif is dispensable for platelet filopodia generation in mice. PLoS One. 8, e54663.10.1371/journal.pone.0054663Suche in Google Scholar PubMed PubMed Central
Goh, W.I., Sudhaharan, T., Lim, K.B., Sem, K.P., Lau, C.L., and Ahmed, S. (2011). Rif-mDia1 interaction is involved in filopodium formation independent of Cdc42 and Rac effectors. J. Biol. Chem. 286, 13681–13694.10.1074/jbc.M110.182683Suche in Google Scholar PubMed PubMed Central
Gorelik, R., Yang, C., Kameswaran, V., Dominguez, R., and Svitkina, T. (2011). Mechanisms of plasma membrane targeting of formin mDia2 through its amino terminal domains. Mol. Biol. Cell. 22, 189–201.10.1091/mbc.e10-03-0256Suche in Google Scholar PubMed PubMed Central
Gouw, L.G., Reading, N.S., Jenson, S.D., Lim, M.S., and Elenitoba-Johnson, K.S. (2005). Expression of the Rho-family GTPase gene RHOF in lymphocyte subsets and malignant lymphomas. Br. J. Haematol. 129, 531–533.10.1111/j.1365-2141.2005.05481.xSuche in Google Scholar PubMed
Gozuacik, D. and Kimchi, A. (2006). DAPK protein family and cancer. Autophagy 2, 74–79.10.4161/auto.2.2.2459Suche in Google Scholar PubMed
Gradilla, A.C. and Guerrero, I. (2013). Cytoneme-mediated cell-to-cell signaling during development. Cell Tissue Res. 352, 59–66.10.1007/s00441-013-1578-xSuche in Google Scholar PubMed
Jaffe, A.B. and Hall, A. (2005). Rho GTPases: biochemistry and biology. Annu. Rev. Cell. Dev. Biol. 21, 247–269.10.1146/annurev.cellbio.21.020604.150721Suche in Google Scholar PubMed
Jaiswal, M., Fansa, E.K., Dvorsky, R., and Ahmadian, M.R. (2013). New insight into the molecular switch mechanism of human Rho family proteins: shifting a paradigm. Biol. Chem. 394, 89–95.10.1515/hsz-2012-0207Suche in Google Scholar PubMed
Kawai, T., Matsumoto, M., Takeda, K., Sanjo, H., and Akira, S. (1998). ZIP kinase, a novel serine/threonine kinase which mediates apoptosis. Mol. Cell. Biol. 18, 1642–1651.10.1128/MCB.18.3.1642Suche in Google Scholar PubMed PubMed Central
Kögel, D., Plöttner, O., Landsberg, G., Christian, S., and Scheidtmann, K.H. (1998). Cloning and characterization of Dlk, a novel serine/threonine kinase that is tightly associated with chromatin and phosphorylates core histones. Oncogene 17, 2645–2654.10.1038/sj.onc.1202204Suche in Google Scholar PubMed
Koizumi, K., Takano, K., Kaneyasu, A., Watanabe-Takano, H., Tokuda, E., Abe, T., Watanabe, N., Takenawa, T., and Endo, T. (2012). RhoD activated by fibroblast growth factor induces cytoneme-like cellular protrusions through mDia3C. Mol. Biol. Cell 23, 4647–4661.10.1091/mbc.e12-04-0315Suche in Google Scholar
Kyrkou, A., Soufi, M., Bahtz, R., Ferguson, C., Bai, M., Parton, R.G., Hoffmann, I., Zerial, M., Fotsis, T., and Murphy, C. (2013). RhoD participates in the regulation of cell-cycle progression and centrosome duplication. Oncogene 32, 1831–1842.10.1038/onc.2012.195Suche in Google Scholar PubMed
Murata-Hori, M., Fukata, Y., Ueda, K., Iwasaki, T., and Hosoya, H. (2001). HeLa ZIP kinase induces diphosphorylation of myosinII regulatory light chain and reorganization of actin filaments in nonmuscle cells. Oncogene 20, 8175–8183.10.1038/sj.onc.1205055Suche in Google Scholar PubMed
Murphy, C., Saffrich, R., Grummt, M., Gournier, H., Rybin, V., Rubino, M., Auvinen, P., Lütcke, A., Parton, R.G., and Zerial, M. (1996). Endosome dynamics regulated by a Rho protein. Nature 384, 427–432.10.1038/384427a0Suche in Google Scholar PubMed
Murphy, C., Saffrich, R., Olivo-Marin, J.C., Giner, A., Ansorge, W., Fotsis, T., and Zerial, M. (2001). Dual function of RhoD in vesicular movement and cell motility. Eur. J. Cell Biol. 80, 391–398.10.1078/0171-9335-00173Suche in Google Scholar PubMed
Nagano, T., Yoneda, T., Hatanaka, Y., Kubota, C., Murakami, F., and Sato, M. (2002). Filamin A-interacting protein (FILIP) regulates cortical cell migration out of the ventricular zone. Nat. Cell Biol. 4, 495–501.10.1038/ncb808Suche in Google Scholar PubMed
Nehru, V., Almeida, F.N., and Aspenström, P. (2013a). Interaction of RhoD and ZIP kinase modulates actin filament assembly and focal adhesion dynamics. Biochem. Biophys. Res. Commun. 433, 163–169.10.1016/j.bbrc.2013.02.046Suche in Google Scholar PubMed
Nehru, V., Voytyuk, O., Lennartsson, J., and Aspenström, P. (2013b.) RhoD binds the Rab5 effector Rabankyrin-5 and has a role in trafficking of the platelet-derived growth factor receptor. Traffic 14, 1242–1254.10.1111/tra.12121Suche in Google Scholar PubMed
Olson, M.F. and Sahai, E. (2009). The actin cytoskeleton in cancer cell motility. Clin. Exp. Metastasis 26, 273–287.10.1007/s10585-008-9174-2Suche in Google Scholar PubMed
Pellegrin, S. and Mellor, H. (2005). The Rho family GTPase Rif induces filopodia through mDia2. Curr. Biol. 15, 129–133.10.1016/j.cub.2005.01.011Suche in Google Scholar PubMed
Ridley, A.J. (2013). RhoA, RhoB and RhoC have different roles in cancer cell migration. J. Microsc. 251, 242–249.10.1111/jmi.12025Suche in Google Scholar PubMed
Rottner, K. and Stradal, T.E. (2011). Actin dynamics and turnover in cell motility. Curr. Opin. Cell Biol. 23, 569–578.10.1016/j.ceb.2011.07.003Suche in Google Scholar PubMed
Sandilands, E., Brunton, V.G., and Frame, M.C. (2007). The membrane targeting and spatial activation of Src, Yes and Fyn is influenced by palmitoylation and distinct RhoB/RhoD endosome requirements. J. Cell Sci. 120, 2555–2564.10.1242/jcs.003657Suche in Google Scholar PubMed
Schnatwinkel, C., Christoforidis, S., Lindsay, M.R., Uttenweiler-Joseph, S., Wilm, M., Parton, R.G., and Zerial, M. (2004). The Rab5 effector Rabankyrin-5 regulates and coordinates different endocytic mechanisms. PLoS Biol. 2, E261.10.1371/journal.pbio.0020261Suche in Google Scholar PubMed PubMed Central
Tcherkezian, J. and Lamarche-Vane, N. (2007). Current knowledge of the large RhoGAP family of proteins. Biol. Cell. 99, 67–86.10.1042/BC20060086Suche in Google Scholar PubMed
Tong, Y., Chugha, P., Hota, P.K., Alviani, R.S., Li, M., Tempel, W., Shen, L., Park, H.W., and Buck, M. (2007). Binding of Rac1, Rnd1, and RhoD to a novel Rho GTPase interaction motif destabilizes dimerization of the plexin-B1 effector domain. J. Biol. Chem. 282, 37215–37224.10.1074/jbc.M703800200Suche in Google Scholar PubMed PubMed Central
Tsubikamoto, K., Matsumoto, K., Abe, H., Ishii, J., Amano, M., Kaibuchi, K., and Endo, T. (1999). Small GTPase RhoD suppresses cell migration and cytokinesis. Oncogene 18, 2431–2440.10.1038/sj.onc.1202604Suche in Google Scholar PubMed
Wennerberg, K. and Der, C.J. (2004). Rho-family GTPases: it’s not only Rac and Rho (and I like it). J. Cell Sci. 117, 1301–1312.10.1242/jcs.01118Suche in Google Scholar PubMed
Zanata, S.M., Hovatta, I., Rohm, B., and Püschel, A.W. (2002). Antagonistic effects of Rnd1 and RhoD GTPases regulate receptor activity in Semaphorin 3A-induced cytoskeletal collapse. J. Neurosci. 22, 471–477.10.1523/JNEUROSCI.22-02-00471.2002Suche in Google Scholar PubMed PubMed Central
Zhou, A.X., Hartwig, J.H., and Akyürek, L.M. (2010). Filamins in cell signaling, transcription and organ development. Trends Cell Biol. 20, 113–123.10.1016/j.tcb.2009.12.001Suche in Google Scholar PubMed
©2014 by Walter de Gruyter Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In vivo functions of small GTPases in neocortical development
- Atypical Rho GTPases RhoD and Rif integrate cytoskeletal dynamics and membrane trafficking
- The structural biology of the amyloid precursor protein APP – a complex puzzle reveals its multi-domain architecture
- Antagonizing leptin: current status and future directions
- The diverse roles of the Nup93/Nic96 complex proteins – structural scaffolds of the nuclear pore complex with additional cellular functions
- How to discover a metabolic pathway? An update on gene identification in aliphatic glucosinolate biosynthesis, regulation and transport
- The extended reductive acetyl-CoA pathway: ATPases in metal cluster maturation and reductive activation
- Tetracycline antibiotics and resistance mechanisms
Artikel in diesem Heft
- Frontmatter
- In vivo functions of small GTPases in neocortical development
- Atypical Rho GTPases RhoD and Rif integrate cytoskeletal dynamics and membrane trafficking
- The structural biology of the amyloid precursor protein APP – a complex puzzle reveals its multi-domain architecture
- Antagonizing leptin: current status and future directions
- The diverse roles of the Nup93/Nic96 complex proteins – structural scaffolds of the nuclear pore complex with additional cellular functions
- How to discover a metabolic pathway? An update on gene identification in aliphatic glucosinolate biosynthesis, regulation and transport
- The extended reductive acetyl-CoA pathway: ATPases in metal cluster maturation and reductive activation
- Tetracycline antibiotics and resistance mechanisms