Home Enrichment of target sequences for next-generation sequencing applications in research and diagnostics
Article
Licensed
Unlicensed Requires Authentication

Enrichment of target sequences for next-generation sequencing applications in research and diagnostics

  • Janine Altmüller EMAIL logo , Birgit S. Budde and Peter Nürnberg
Published/Copyright: September 5, 2013

Abstract

Targeted re-sequencing such as gene panel sequencing (GPS) has become very popular in medical genetics, both for research projects and in diagnostic settings. The technical principles of the different enrichment methods have been reviewed several times before; however, new enrichment products are constantly entering the market, and researchers are often puzzled about the requirement to take decisions about long-term commitments, both for the enrichment product and the sequencing technology. This review summarizes important considerations for the experimental design and provides helpful recommendations in choosing the best sequencing strategy for various research projects and diagnostic applications.


Corresponding author: Janine Altmüller, Cologne Center for Genomics, University of Cologne, D-50931 Cologne, Germany, e-mail:

References

Bakker, E. (2006). Is the DNA sequence the gold standard in genetic testing? Quality of molecular genetic tests assessed. Clin. Chem. 52, 557–558.10.1373/clinchem.2005.066068Search in Google Scholar PubMed

Becker, K., Vollbrecht, C., Koitzsch, U., Koenig, K., Fassunke, J., Huss, S., Nuernberg, P., Heukamp, L.C., Buettner, R., Odenthal, M., et al. (2013). Deep ion sequencing of amplicon adapter ligated libraries: a novel tool in molecular diagnostics of formalin fixed and paraffin embedded tissues. J. Clin. Pathol. 66, 803–806.10.1136/jclinpath-2013-201549Search in Google Scholar PubMed

Charlesworth, G., Plagnol, V., Holmstrom, K.M., Bras, J., Sheerin, U.M., Preza, E., Rubio-Agusti, I., Ryten, M., Schneider, S.A., Stamelou, M., et al. (2012). Mutations in ANO3 cause dominant craniocervical dystonia: ion channel implicated in pathogenesis. Am. J. Hum. Genet. 91, 1041–1050.10.1016/j.ajhg.2012.10.024Search in Google Scholar PubMed PubMed Central

Costa, J.L., Sousa, S., Justino, A., Kay, T., Fernandes, S., Cirnes, L., Schmitt, F., and Machado, J.C. (2013). Nonoptical massive parallel DNA sequencing of BRCA1 and BRCA2 genes in a diagnostic setting. Hum. Mutat. 34, 629–635.10.1002/humu.22272Search in Google Scholar PubMed

Dames, S., Chou, L.S., Xiao, Y., Wayman, T., Stocks, J., Singleton, M., Eilbeck, K., and Mao, R. (2013). The development of next-generation sequencing assays for the mitochondrial genome and 108 nuclear genes associated with mitochondrial disorders. J. Mol. Diagn. 15, 526–534.10.1016/j.jmoldx.2013.03.005Search in Google Scholar PubMed

Duncavage, E.J., Abel, H.J., Szankasi, P., Kelley, T.W., and Pfeifer, J.D. (2012). Targeted next generation sequencing of clinically significant gene mutations and translocations in leukemia. Modern Pathol. 25, 795–804.10.1038/modpathol.2012.29Search in Google Scholar PubMed

Feng, B.J., Tavtigian, S.V., Southey, M.C., and Goldgar, D.E. (2011). Design considerations for massively parallel sequencing studies of complex human disease. PLoS One 6, e23221.10.1371/journal.pone.0023221Search in Google Scholar PubMed PubMed Central

Forshew, T., Murtaza, M., Parkinson, C., Gale, D., Tsui, D.W., Kaper, F., Dawson, S.J., Piskorz, A.M., Jimenez-Linan, M., Bentley, D., et al. (2012). Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci. Transl. Med. 4, 136ra68.10.1126/scitranslmed.3003726Search in Google Scholar PubMed

Gargis, A.S., Kalman, L., Berry, M.W., Bick, D.P., Dimmock, D.P., Hambuch, T., Lu, F., Lyon, E., Voelkerding, K.V., Zehnbauer, B.A., et al. (2012). Assuring the quality of next-generation sequencing in clinical laboratory practice. Nat. Biotechnol. 30, 1033–1036.10.1038/nbt.2403Search in Google Scholar PubMed PubMed Central

Hiatt, J.B., Pritchard, C.C., Salipante, S.J., O’Roak, B.J., and Shendure, J. (2013). Single molecule molecular inversion probes for targeted, high-accuracy detection of low-frequency variation. Genome Res. 23, 843–854.10.1101/gr.147686.112Search in Google Scholar PubMed PubMed Central

Hollants, S., Redeker, E.J., and Matthijs, G. (2012). Microfluidic amplification as a tool for massive parallel sequencing of the familial hypercholesterolemia genes. Clin. Chem. 58, 717–724.10.1373/clinchem.2011.173963Search in Google Scholar PubMed

Hubers, A.J., Heideman, D.A., Yatabe, Y., Wood, M.D., Tull, J., Taron, M., Molina, M.A., Mayo, C., Bertran-Alamillo, J., Herder, G.J., et al. (2013). EGFR mutation analysis in sputum of lung cancer patients: a multitechnique study. Lung Cancer. DOI: 10.1016/j.lungcan.2013.07.011. [Epub ahead of print].10.1016/j.lungcan.2013.07.011Search in Google Scholar PubMed

Huebner, A.K., Gandia, M., Frommolt, P., Maak, A., Wicklein, E.M., Thiele, H., Altmuller, J., Wagner, F., Vinuela, A., Aguirre, L.A., et al. (2011). Nonsense mutations in SMPX, encoding a protein responsive to physical force, result in X-chromosomal hearing loss. Am. J. Hum. Genet. 88, 621–627.10.1016/j.ajhg.2011.04.007Search in Google Scholar PubMed PubMed Central

Johansson, H., Isaksson, M., Sorqvist, E.F., Roos, F., Stenberg, J., Sjoblom, T., Botling, J., Micke, P., Edlund, K., Fredriksson, S., et al. (2011). Targeted resequencing of candidate genes using selector probes. Nucleic Acids Res. 39, e8.10.1093/nar/gkq1005Search in Google Scholar PubMed PubMed Central

Kalender, A.Z., De, K.K., Gianfelici, V., Geerdens, E., Vandepoel, R., Pauwels, D., Porcu, M., Lahortiga, I., Brys, V., Dirks, W.G., et al. (2012). High accuracy mutation detection in leukemia on a selected panel of cancer genes. PLoS One 7, e38463.10.1371/journal.pone.0038463Search in Google Scholar PubMed PubMed Central

Katsanis, S.H. and Katsanis, N. (2013). Molecular genetic testing and the future of clinical genomics. Nat. Rev. Genet. 14, 415–426.10.1038/nrg3493Search in Google Scholar PubMed PubMed Central

Kerick, M., Isau, M., Timmermann, B., Sultmann, H., Herwig, R., Krobitsch, S., Schaefer, G., Verdorfer, I., Bartsch, G., Klocker, H., et al. (2011). Targeted high throughput sequencing in clinical cancer settings: formaldehyde fixed-paraffin embedded (FFPE) tumor tissues, input amount and tumor heterogeneity. Med. Genomics 4, 68.10.1186/1755-8794-4-68Search in Google Scholar

Ku, C.S., Cooper, D.N., Iacopetta, B., and Roukos, D.H. (2013). Integrating next-generation sequencing into the diagnostic testing of inherited cancer predisposition. Clin. Genet. 83, 2–6.10.1111/cge.12028Search in Google Scholar PubMed

Lal, D., Becker, K., Motameny, S., Altmuller, J., Thiele, H., Nurnberg, P., Ahting, U., Rolinski, B., Neubauer, B.A., and Hahn, A. (2013). Homozygous missense mutation of NDUFV1 as the cause of infantile bilateral striatal necrosis. Neurogenetics 14, 85–87.10.1007/s10048-013-0355-zSearch in Google Scholar PubMed

Lee, J.E., Choi, J.H., Lee, J.H., and Lee, M.G. (2005). Gene SNPs and mutations in clinical genetic testing: haplotype-based testing and analysis. Mutat. Res. 573, 195–204.10.1016/j.mrfmmm.2004.08.018Search in Google Scholar PubMed

Lopes, L.R., Zekavati, A., Syrris, P., Hubank, M., Giambartolomei, C., Dalageorgou, C., Jenkins, S., McKenna, W., Plagnol, V., and Elliott, P.M. (2013). Genetic complexity in hypertrophic cardiomyopathy revealed by high-throughput sequencing. J. Med. Genet. 50, 228–239.10.1136/jmedgenet-2012-101270Search in Google Scholar PubMed PubMed Central

Mertes, F., Elsharawy, A., Sauer, S., van Helvoort, J.M., van der Zaag, P.J., Franke, A., Nilsson, M., Lehrach, H., and Brookes, A.J. (2011). Targeted enrichment of genomic DNA regions for next-generation sequencing. Brief. Funct. Genomics 10, 374–386.10.1093/bfgp/elr033Search in Google Scholar PubMed PubMed Central

Querings, S., Altmuller, J., Ansen, S., Zander, T., Seidel, D., Gabler, F., Peifer, M., Markert, E., Stemshorn, K., Timmermann, B., et al. (2011). Benchmarking of mutation diagnostics in clinical lung cancer specimens. PLoS One 6, e19601.10.1371/journal.pone.0019601Search in Google Scholar PubMed PubMed Central

Sarhadi, V.K., Lahti, L., Scheinin, I., Tyybakinoja, A., Savola, S., Usvasalo, A., Raty, R., Elonen, E., Ellonen, P., Saarinen-Pihkala, U.M., et al. (2013). Targeted resequencing of 9p in acute lymphoblastic leukemia yields concordant results with array CGH and reveals novel genomic alterations. Genomics 102, 182–188.10.1016/j.ygeno.2013.01.001Search in Google Scholar PubMed

Schrauwen, I., Sommen, M., Corneveaux, J.J., Reiman, R.A., Hackett, N.J., Claes, C., Claes, K., Bitner-Glindzicz, M., Coucke, P., Van, C.G., et al. (2013). A sensitive and specific diagnostic test for hearing loss using a microdroplet PCR-based approach and next generation sequencing. Am. J. Med. Genet. A 161A, 145–152.10.1002/ajmg.a.35737Search in Google Scholar PubMed

Schweiger, M.R., Kerick, M., Timmermann, B., Albrecht, M.W., Borodina, T., Parkhomchuk, D., Zatloukal, K., and Lehrach, H. (2009). Genome-wide massively parallel sequencing of formaldehyde fixed-paraffin embedded (FFPE) tumor tissues for copy-number- and mutation-analysis. PLoS One 4, e5548.10.1371/journal.pone.0005548Search in Google Scholar PubMed PubMed Central

Shendure, J. and Lieberman, A.E. (2012). The expanding scope of DNA sequencing. Nat. Biotechnol. 30, 1084–1094.10.1038/nbt.2421Search in Google Scholar PubMed PubMed Central

Singh, R.R., Patel, K.P., Routbort, M.J., Reddy, N.G., Barkoh, B.A., Handal, B., Kanagal-Shamanna, R., Greaves, W.O., Medeiros, L.J., Aldape, K.D., et al. (2013). Clinical validation of a next-generation sequencing screen for mutational hotspots in 46 cancer-related genes. J. Mol. Diagn. 15, 607–622.10.1016/j.jmoldx.2013.05.003Search in Google Scholar PubMed

Wagle, N., Berger, M.F., Davis, M.J., Blumenstiel, B., Defelice, M., Pochanard, P., Ducar, M., Van, H.P., Macconaill, L.E., Hahn, W.C., et al. (2012). High-throughput detection of actionable genomic alterations in clinical tumor samples by targeted, massively parallel sequencing. Cancer Discov. 2, 82–93.10.1158/2159-8290.CD-11-0184Search in Google Scholar PubMed PubMed Central

Walsh, T., Lee, M.K., Casadei, S., Thornton, A.M., Stray, S.M., Pennil, C., Nord, A.S., Mandell, J.B., Swisher, E.M., and King, M.C. (2010). Detection of inherited mutations for breast and ovarian cancer using genomic capture and massively parallel sequencing. Proc. Natl. Acad. Sci. USA 107, 12629–12633.10.1073/pnas.1007983107Search in Google Scholar PubMed PubMed Central

Wieczorek, D., Bogershausen, N., Beleggia, F., Steiner-Haldenstatt, S., Pohl, E., Li, Y., Milz, E., Martin, M., Thiele, H., Altmuller, J., et al. (2013). A comprehensive molecular study on Coffin-Siris and Nicolaides-Baraitser syndromes identifies a broad molecular and clinical spectrum converging on altered chromatin remodeling. Hum. Mol. Genet. DOI: 10.1093/hmg/ddt366. [Epub ahead of print].10.1093/hmg/ddt366Search in Google Scholar PubMed

Received: 2013-06-17
Accepted: 2013-08-30
Published Online: 2013-09-05
Published in Print: 2014-02-01

©2014 by Walter de Gruyter Berlin Boston

Downloaded on 19.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2013-0199/html
Scroll to top button