Abstract
The APOBEC3 (A3) family of cytidine deaminases plays a vital role for innate defense against retroviruses. Lentiviruses such as HIV-1 evolved the Vif protein that triggers A3 protein degradation. There are seven A3 proteins, A3A-A3H, found in humans. All A3 proteins can deaminate cytidines to uridines in single-stranded DNA (ssDNA), generated during viral reverse transcription. A3 proteins have either one or two cytidine deaminase domains (CD). The CDs coordinate a zinc ion, and their amino acid specificity classifies the A3s into A3Z1, A3Z2, and A3Z3. A3 proteins occur as monomers, dimers, and large oligomeric complexes. Studies on the nature of A3 oligomerization, as well as the mode of interaction of A3s with RNA and ssDNA are partially controversial. High-resolution structures of the catalytic CD2 of A3G and A3F as well as of the single CD proteins A3A and A3C have been published recently. The NMR and X-ray crystal structures show globular proteins with six α-helices and five β sheets arranged in a characteristic motif (α1-β1-β2/2′-α2-β3-α3-β4-α4-β5-α5-α6). However, the detailed arrangement and extension of individual structure elements and their relevance for A3 complex formation and activity remains a matter of debate and will be highlighted in this review.
We gratefully acknowledge the support (and training) from the International NRW Research School BioStruct, granted by the Ministry of Innovation, Science and Research of the State North Rhine-Westphalia, the Heinrich-Heine-University of Düsseldorf, and the Entrepreneur Foundation at the Heinrich-Heine-University of Düsseldorf. CM is supported by the Heinz Ansmann Foundation for AIDS Research. We thank Lutz Schmitt and Dieter Willbold for their continuous support.
References
Albin, J.S. and Harris, R.S. (2010). Interactions of host APOBEC3 restriction factors with HIV-1 in vivo: implications for therapeutics. Expert. Rev. Mol. Med 12, e4.10.1017/S1462399409001343Suche in Google Scholar PubMed PubMed Central
Albin, J.S., LaRue, R.S., Weaver, J.A., Brown, W.L., Shindo, K., Harjes, E., Matsuo, H., and Harris, R.S. (2010). A single amino acid in human APOBEC3F alters susceptibility to HIV-1 Vif. J. Biol. Chem. 285, 40785–40792.10.1074/jbc.M110.173161Suche in Google Scholar PubMed PubMed Central
Arias, J.F., Koyama, T., Kinomoto, M., and Tokunaga, K. (2012). Retroelements versus APOBEC3 family members: no great escape from the magnificent seven. Front. Microbiol. 3, 275.10.3389/fmicb.2012.00275Suche in Google Scholar PubMed PubMed Central
Autore, F., Bergeron, J.R., Malim, M.H., Fraternali, F., and Huthoff, H. (2010). Rationalisation of the differences between APOBEC3G structures from crystallography and NMR studies by molecular dynamics simulations. PLoS One. 5, e11515.10.1371/journal.pone.0011515Suche in Google Scholar PubMed PubMed Central
Bennett, R.P., Salter, J.D., Liu, X., Wedekind, J.E., and Smith, H.C. (2008). APOBEC3G subunits self-associate via the C-terminal deaminase domain. J. Biol. Chem. 283, 33329–33336.10.1074/jbc.M803726200Suche in Google Scholar PubMed PubMed Central
Bergeron, J.R., Huthoff, H., Veselkov, D.A., Beavil, R.L., Simpson, P.J., Matthews, S.J., Malim, M.H., and Sanderson, M.R. (2010). The SOCS-box of HIV-1 Vif interacts with ElonginBC by induced-folding to recruit its Cul5-containing ubiquitin ligase complex. PLoS Pathog. 6, e1000925.10.1371/journal.ppat.1000925Suche in Google Scholar PubMed PubMed Central
Bohn, M.F., Shandilya, S.M., Albin, J.S., Kouno, T., Anderson, B.D., McDougle, R.M., Carpenter, M.A., Rathore, A., Evans, L., Davis, A.N., et al. (2013). Crystal structure of the DNA cytosine deaminase APOBEC3F: the catalytically active and HIV-1 Vif-binding domain. Structure 21, 1042–1050.10.1016/j.str.2013.04.010Suche in Google Scholar PubMed PubMed Central
Bulliard, Y., Turelli, P., Rohrig, U.F., Zoete, V., Mangeat, B., Michielin, O., and Trono, D. (2009). Functional analysis and structural modeling of human APOBEC3G reveal the role of evolutionarily conserved elements in the inhibition of human immunodeficiency virus type 1 infection and Alu transposition. J. Virol. 83, 12611–12621.10.1128/JVI.01491-09Suche in Google Scholar PubMed PubMed Central
Burnett, A. and Spearman, P. (2007). APOBEC3G multimers are recruited to the plasma membrane for packaging into human immunodeficiency virus type 1 virus-like particles in an RNA-dependent process requiring the NC basic linker. J. Virol. 81, 5000–5013.10.1128/JVI.02237-06Suche in Google Scholar PubMed PubMed Central
Burns, M.B., Lackey, L., Carpenter, M.A., Rathore, A., Land, A.M., Leonard, B., Refsland, E.W., Kotandeniya, D., Tretyakova, N., Nikas, J.B., et al. (2013). APOBEC3B is an enzymatic source of mutation in breast cancer. Nature 494, 366–370.10.1038/nature11881Suche in Google Scholar PubMed PubMed Central
Byeon, I.J., Ahn, J., Mitra, M., Byeon, C.H., Hercik, K., Hritz, J., Charlton, L.M., Levin, J.G., and Gronenborn, A.M. (2013). NMR structure of human restriction factor APOBEC3A reveals substrate binding and enzyme specificity. Nat. Commun. 4, 1890.10.1038/ncomms2883Suche in Google Scholar PubMed PubMed Central
Chareza, S., Slavkovic, L.D., Liu, Y., Rathe, A.M., Münk, C., Zabogli, E., Pistello, M., and Löchelt, M. (2012). Molecular and functional interactions of cat APOBEC3 and feline foamy and immunodeficiency virus proteins: different ways to counteract host-encoded restriction. Virology 424, 138–146.10.1016/j.virol.2011.12.017Suche in Google Scholar PubMed
Chelico, L., Pham, P., Calabrese, P., and Goodman, M.F. (2006). APOBEC3G DNA deaminase acts processively 3′→5′ on single-stranded DNA. Nat. Struct. Mol. Biol 13, 392–399.10.1038/nsmb1086Suche in Google Scholar PubMed
Chelico, L., Sacho, E.J., Erie, D.A., and Goodman, M.F. (2008). A model for oligomeric regulation of APOBEC3G cytosine deaminase-dependent restriction of HIV. J. Biol. Chem. 283, 13780–13791.10.1074/jbc.M801004200Suche in Google Scholar PubMed PubMed Central
Chelico, L., Prochnow, C., Erie, D.A., Chen, X.S., and Goodman, M.F. (2010). Structural model for deoxycytidine deamination mechanisms of the HIV-1 inactivation enzyme APOBEC3G. J. Biol. Chem. 285, 16195–16205.10.1074/jbc.M110.107987Suche in Google Scholar PubMed PubMed Central
Chen, K.M., Harjes, E., Gross, P.J., Fahmy, A., Lu, Y., Shindo, K., Harris, R.S., and Matsuo, H. (2008). Structure of the DNA deaminase domain of the HIV-1 restriction factor APOBEC3G. Nature 452, 116–119.10.1038/nature06638Suche in Google Scholar PubMed
Chiu, Y.L., Witkowska, H.E., Hall, S.C., Santiago, M., Soros, V.B., Esnault, C., Heidmann, T., and Greene, W.C. (2006). High-molecular-mass APOBEC3G complexes restrict Alu retrotransposition. Proc. Natl. Acad. Sci. USA 103, 15588–15593.10.1073/pnas.0604524103Suche in Google Scholar PubMed PubMed Central
Conticello, S.G. (2008). The AID/APOBEC family of nucleic acid mutators. Genome Biol. 9, 229.10.1186/gb-2008-9-6-229Suche in Google Scholar PubMed PubMed Central
Derse, D., Hill, S.A., Princler, G., Lloyd, P., and Heidecker, G. (2007). Resistance of human T cell leukemia virus type 1 to APOBEC3G restriction is mediated by elements in nucleocapsid. Proc. Natl. Acad. Sci. USA 104, 2915–2920.10.1073/pnas.0609444104Suche in Google Scholar PubMed PubMed Central
Feng, Y. and Chelico, L. (2011). Intensity of deoxycytidine deamination of HIV-1 proviral DNA by the retroviral restriction factor APOBEC3G is mediated by the noncatalytic domain. J. Biol. Chem. 286, 11415–11426.10.1074/jbc.M110.199604Suche in Google Scholar PubMed PubMed Central
Friew, Y.N., Boyko, V., Hu, W.S., and Pathak, V.K. (2009). Intracellular interactions between APOBEC3G, RNA, and HIV-1 Gag: APOBEC3G multimerization is dependent on its association with RNA. Retrovirology 6, 56.10.1186/1742-4690-6-56Suche in Google Scholar PubMed PubMed Central
Furukawa, A., Nagata, T., Matsugami, A., Habu, Y., Sugiyama, R., Hayashi, F., Kobayashi, N., Yokoyama, S., Takaku, H., and Katahira, M. (2009). Structure, interaction and real-time monitoring of the enzymatic reaction of wild-type APOBEC3G. EMBO J. 28, 440–451.10.1038/emboj.2008.290Suche in Google Scholar PubMed PubMed Central
Gallois-Montbrun, S., Kramer, B., Swanson, C.M., Byers, H., Lynham, S., Ward, M., and Malim, M.H. (2007). Antiviral protein APOBEC3G localizes to ribonucleoprotein complexes found in P bodies and stress granules. J. Virol. 81, 2165–2178.10.1128/JVI.02287-06Suche in Google Scholar PubMed PubMed Central
Gallois-Montbrun, S., Holmes, R.K., Swanson, C.M., Fernandez-Ocana, M., Byers, H.L., Ward, M.A., and Malim, M.H. (2008). Comparison of cellular ribonucleoprotein complexes associated with the APOBEC3F and APOBEC3G antiviral proteins. J. Virol. 82, 5636–5642.10.1128/JVI.00287-08Suche in Google Scholar PubMed PubMed Central
Hache, G., Liddament, M.T., and Harris, R.S. (2005). The retroviral hypermutation specificity of APOBEC3F and APOBEC3G is governed by the C-terminal DNA cytosine deaminase domain. J. Biol. Chem. 280, 10920–10924.10.1074/jbc.M500382200Suche in Google Scholar PubMed
Harjes, E., Gross, P.J., Chen, K.M., Lu, Y., Shindo, K., Nowarski, R., Gross, J.D., Kotler, M., Harris, R.S., and Matsuo, H. (2009). An extended structure of the APOBEC3G catalytic domain suggests a unique holoenzyme model. J. Mol. Biol 389, 819–832.10.1016/j.jmb.2009.04.031Suche in Google Scholar PubMed PubMed Central
Harris, R.S., Petersen-Mahrt, S.K., and Neuberger, M.S. (2002). RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Mol. Cell 10, 1247–1253.10.1016/S1097-2765(02)00742-6Suche in Google Scholar PubMed
Holden, L.G., Prochnow, C., Chang, Y.P., Bransteitter, R., Chelico, L., Sen, U., Stevens, R.C., Goodman, M.F., and Chen, X.S. (2008). Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications. Nature 456, 121–124.10.1038/nature07357Suche in Google Scholar PubMed PubMed Central
Huthoff, H., Autore, F., Gallois-Montbrun, S., Fraternali, F., and Malim, M.H. (2009). RNA-dependent oligomerization of APOBEC3G is required for restriction of HIV-1. PLoS Pathog. 5, e1000330.10.1371/journal.ppat.1000330Suche in Google Scholar PubMed PubMed Central
Iwatani, Y., Takeuchi, H., Strebel, K., and Levin, J.G. (2006). Biochemical activities of highly purified, catalytically active human APOBEC3G: correlation with antiviral effect. J. Virol. 80, 5992–6002.10.1128/JVI.02680-05Suche in Google Scholar PubMed PubMed Central
Jager, S., Kim, D.Y., Hultquist, J.F., Shindo, K., LaRue, R.S., Kwon, E., Li, M., Anderson, B.D., Yen, L., Stanley, D., et al. (2012). Vif hijacks CBF-β to degrade APOBEC3G and promote HIV-1 infection. Nature 481, 371–375.10.1038/nature10693Suche in Google Scholar PubMed PubMed Central
Jaguva Vasudevan, A.A., Perkovic, M., Bulliard, Y., Cichutek, K., Trono, D., Haussinger, D., and Munk, C. (2013). Prototype foamy virus bet impairs the dimerization and cytosolic solubility of human APOBEC3G. J. Virol. 2013 Jun 12. [Epub ahead of print].10.1128/JVI.03385-12Suche in Google Scholar PubMed PubMed Central
Jarmuz, A., Chester, A., Bayliss, J., Gisbourne, J., Dunham, I., Scott, J., and Navaratnam, N. (2002). An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. Genomics 79, 285–296.10.1006/geno.2002.6718Suche in Google Scholar PubMed
Kitamura, S., Ode, H., Nakashima, M., Imahashi, M., Naganawa, Y., Kurosawa, T., Yokomaku, Y., Yamane, T., Watanabe, N., Suzuki, A., et al. (2012). The APOBEC3C crystal structure and the interface for HIV-1 Vif binding. Nat. Struct. Mol. Biol 19, 1005–1010.10.1038/nsmb.2378Suche in Google Scholar PubMed
Kolokithas, A., Rosenke, K., Malik, F., Hendrick, D., Swanson, L., Santiago, M.L., Portis, J.L., Hasenkrug, K.J., and Evans, L.H. (2010). The glycosylated Gag protein of a murine leukemia virus inhibits the antiretroviral function of APOBEC3. J. Virol. 84, 10933–10936.10.1128/JVI.01023-10Suche in Google Scholar PubMed PubMed Central
Kozak, S.L., Marin, M., Rose, K.M., Bystrom, C., and Kabat, D. (2006). The anti-HIV-1 editing enzyme APOBEC3G binds HIV-1 RNA and messenger RNAs that shuttle between polysomes and stress granules. J. Biol. Chem. 281, 29105–29119.10.1074/jbc.M601901200Suche in Google Scholar PubMed
Kreisberg, J.F., Yonemoto, W., and Greene, W.C. (2006). Endogenous factors enhance HIV infection of tissue naive CD4 T cells by stimulating high molecular mass APOBEC3G complex formation. J. Exp. Med. 203, 865–870.10.1084/jem.20051856Suche in Google Scholar PubMed PubMed Central
Krissinel, E. and Henrick, K. (2007). Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797.10.1016/j.jmb.2007.05.022Suche in Google Scholar PubMed
LaRue, R.S., Jonsson, S.R., Silverstein, K.A., Lajoie, M., Bertrand, D., El-Mabrouk, N., Hotzel, I., Andresdottir, V., Smith, T.P., and Harris, R.S. (2008). The artiodactyl APOBEC3 innate immune repertoire shows evidence for a multi-functional domain organization that existed in the ancestor of placental mammals. Mol. Biol. 9, 104.10.1186/1471-2199-9-104Suche in Google Scholar PubMed PubMed Central
LaRue, R.S., Andresdottir, V., Blanchard, Y., Conticello, S.G., Derse, D., Emerman, M., Greene, W.C., Jonsson, S.R., Landau, N.R., Löchelt, M., et al. (2009). Guidelines for naming nonprimate APOBEC3 genes and proteins. J. Virol. 83, 494–497.10.1128/JVI.01976-08Suche in Google Scholar PubMed PubMed Central
Li, M., Shandilya, S.M., Carpenter, M.A., Rathore, A., Brown, W.L., Perkins, A.L., Harki, D.A., Solberg, J., Hook, D.J., Pandey, K.K., et al. (2012). First-in-class small molecule inhibitors of the single-strand DNA cytosine deaminase APOBEC3G. ACS Chem. Biol. 7, 506–517.10.1021/cb200440ySuche in Google Scholar PubMed PubMed Central
Löchelt, M., Romen, F., Bastone, P., Muckenfuss, H., Kirchner, N., Kim, Y.B., Truyen, U., Rosler, U., Battenberg, M., Saib, A., et al. (2005). The antiretroviral activity of APOBEC3 is inhibited by the foamy virus accessory Bet protein. Proc. Natl. Acad. Sci. USA 102, 7982–7987.10.1073/pnas.0501445102Suche in Google Scholar PubMed PubMed Central
Mariani, R., Chen, D., Schröfelbauer, B., Navarro, F., König, R., Bollman, B., Münk, C., Nymark-McMahon, H., and Landau, N.R. (2003). Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif. Cell 114, 21–31.10.1016/S0092-8674(03)00515-4Suche in Google Scholar
Marin, M., Rose, K.M., Kozak, S.L., and Kabat, D. (2003). HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation. Nat. Med. 9, 1398–1403.10.1038/nm946Suche in Google Scholar PubMed
Mehle, A., Goncalves, J., Santa-Marta, M., McPike, M., and Gabuzda, D. (2004). Phosphorylation of a novel SOCS-box regulates assembly of the HIV-1 Vif-Cul5 complex that promotes APOBEC3G degradation. Genes Dev. 18, 2861–2866.10.1101/gad.1249904Suche in Google Scholar PubMed PubMed Central
Münk, C., Beck, T., Zielonka, J., Hotz-Wagenblatt, A., Chareza, S., Battenberg, M., Thielebein, J., Cichutek, K., Bravo, I.G., O’Brien, S.J., et al. (2008). Functions, structure, and read-through alternative splicing of feline APOBEC3 genes. Genome Biol. 9, R48.10.1186/gb-2008-9-3-r48Suche in Google Scholar PubMed PubMed Central
Münk, C., Jensen, B.E., Zielonka, J., Häussinger, D., and Kamp, C. (2012a). Running loose or getting lost: how HIV-1 counters and capitalizes on APOBEC3-induced mutagenesis through its Vif protein. Viruses 4, 3132–3161.10.3390/v4113132Suche in Google Scholar PubMed PubMed Central
Münk, C., Willemsen, A., and Bravo, I.G. (2012b). An ancient history of gene duplications, fusions and losses in the evolution of APOBEC3 mutators in mammals. BMC. Evol. Biol 12, 71.10.1186/1471-2148-12-71Suche in Google Scholar PubMed PubMed Central
Navarro, F., Bollman, B., Chen, H., König, R., Yu, Q., Chiles, K., and Landau, N.R. (2005). Complementary function of the two catalytic domains of APOBEC3G. Virology 333, 374–386.10.1016/j.virol.2005.01.011Suche in Google Scholar PubMed
Niewiadomska, A.M., Tian, C., Tan, L., Wang, T., Sarkis, P.T., and Yu, X.F. (2007). Differential inhibition of long interspersed element 1 by APOBEC3 does not correlate with high-molecular-mass-complex formation or P-body association. J. Virol. 81, 9577–9583.10.1128/JVI.02800-06Suche in Google Scholar PubMed PubMed Central
Nik-Zainal, S., Alexandrov, L.B., Wedge, D.C., Van, L.P., Greenman, C.D., Raine, K., Jones, D., Hinton, J., Marshall, J., Stebbings, L.A., et al. (2012). Mutational processes molding the genomes of 21 breast cancers. Cell 149, 979–993.10.1016/j.cell.2012.04.024Suche in Google Scholar PubMed PubMed Central
Nowarski, R. and Kotler, M. (2013). APOBEC3 cytidine deaminases in double-strand DNA break repair and cancer promotion. Cancer Res. 73, 3494–3498.10.1158/0008-5472.CAN-13-0728Suche in Google Scholar PubMed PubMed Central
Nowarski, R., Britan-Rosich, E., Shiloach, T., and Kotler, M. (2008). Hypermutation by intersegmental transfer of APOBEC3G cytidine deaminase. Nat. Struct. Mol. Biol. 15, 1059–1066.10.1038/nsmb.1495Suche in Google Scholar PubMed
Ooms, M., Krikoni, A., Kress, A.K., Simon, V., and Münk, C. (2012). APOBEC3A, APOBEC3B, and APOBEC3H haplotype 2 restrict human T-lymphotropic virus type 1. J. Virol. 86, 6097–6108.10.1128/JVI.06570-11Suche in Google Scholar PubMed PubMed Central
Perkovic, M., Schmidt, S., Marino, D., Russell, R.A., Stauch, B., Hofmann, H., Kopietz, F., Kloke, B.P., Zielonka, J., Strover, H., et al. (2009). Species-specific inhibition of APOBEC3C by the prototype foamy virus protein bet. J. Biol. Chem. 284, 5819–5826.10.1074/jbc.M808853200Suche in Google Scholar PubMed PubMed Central
Prochnow, C., Bransteitter, R., Klein, M.G., Goodman, M.F., and Chen, X.S. (2007). The APOBEC-2 crystal structure and functional implications for the deaminase AID. Nature 445, 447–451.10.1038/nature05492Suche in Google Scholar PubMed
Rausch, J.W., Chelico, L., Goodman, M.F., and Le Grice, S.F. (2009). Dissecting APOBEC3G substrate specificity by nucleoside analog interference. J. Biol. Chem. 284, 7047–7058.10.1074/jbc.M807258200Suche in Google Scholar PubMed PubMed Central
Roberts, S.A., Sterling, J., Thompson, C., Harris, S., Mav, D., Shah, R., Klimczak, L.J., Kryukov, G.V., Malc, E., Mieczkowski, P.A., et al. (2012). Clustered mutations in yeast and in human cancers can arise from damaged long single-strand DNA regions. Mol. Cell 46, 424–435.10.1016/j.molcel.2012.03.030Suche in Google Scholar PubMed PubMed Central
Russell, R.A., Wiegand, H.L., Moore, M.D., Schafer, A., McClure, M.O., and Cullen, B.R. (2005). Foamy virus Bet proteins function as novel inhibitors of the APOBEC3 family of innate antiretroviral defense factors. J. Virol. 79, 8724–8731.10.1128/JVI.79.14.8724-8731.2005Suche in Google Scholar PubMed PubMed Central
Salter, J.D., Krucinska, J., Raina, J., Smith, H.C., and Wedekind, J.E. (2009). A hydrodynamic analysis of APOBEC3G reveals a monomer-dimer-tetramer self-association that has implications for anti-HIV function. Biochemistry 48, 10685–10687.10.1021/bi901642cSuche in Google Scholar PubMed PubMed Central
Schumacher, A.J., Hache, G., MacDuff, D.A., Brown, W.L., and Harris, R.S. (2008). The DNA deaminase activity of human APOBEC3G is required for Ty1, MusD, and human immunodeficiency virus type 1 restriction. J. Virol. 82, 2652–2660.10.1128/JVI.02391-07Suche in Google Scholar PubMed PubMed Central
Shandilya, S.M., Nalam, M.N., Nalivaika, E.A., Gross, P.J., Valesano, J.C., Shindo, K., Li, M., Munson, M., Royer, W.E., Harjes, E., et al. (2010). Crystal structure of the APOBEC3G catalytic domain reveals potential oligomerization interfaces. Structure 18, 28–38.10.1016/j.str.2009.10.016Suche in Google Scholar PubMed PubMed Central
Sheehy, A.M., Gaddis, N.C., Choi, J.D., and Malim, M.H. (2002). Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418, 646–650.10.1038/nature00939Suche in Google Scholar PubMed
Sheehy, A.M., Gaddis, N.C., and Malim, M.H. (2003). The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat. Med. 9, 1404–1407.10.1038/nm945Suche in Google Scholar PubMed
Shlyakhtenko, L.S., Lushnikov, A.Y., Li, M., Lackey, L., Harris, R.S., and Lyubchenko, Y.L. (2011). Atomic force microscopy studies provide direct evidence for dimerization of the HIV restriction factor APOBEC3G. J. Biol. Chem. 286, 3387–3395.10.1074/jbc.M110.195685Suche in Google Scholar PubMed PubMed Central
Shlyakhtenko, L.S., Lushnikov, A.Y., Miyagi, A., Li, M., Harris, R.S., and Lyubchenko, Y.L. (2012). Nanoscale structure and dynamics of ABOBEC3G complexes with single-stranded DNA. Biochemistry 51, 6432–6440.10.1021/bi300733dSuche in Google Scholar PubMed PubMed Central
Smith, J.L. and Pathak, V.K. (2010). Identification of specific determinants of human APOBEC3F, APOBEC3C, and APOBEC3DE and African green monkey APOBEC3F that interact with HIV-1 Vif. J. Virol. 84, 12599–12608.10.1128/JVI.01437-10Suche in Google Scholar PubMed PubMed Central
Song, C., Sutton, L., Johnson, M.E., D’Aquila, R.T., and Donahue, J.P. (2012). Signals in APOBEC3F N-terminal and C-terminal deaminase domains each contribute to encapsidation in HIV-1 virions and are both required for HIV-1 restriction. J. Biol. Chem. 287, 16965–16974.10.1074/jbc.M111.310839Suche in Google Scholar PubMed PubMed Central
Soros, V.B., Yonemoto, W., and Greene, W.C. (2007). Newly synthesized APOBEC3G is incorporated into HIV virions, inhibited by HIV RNA, and subsequently activated by RNase H. PLoS. Pathog. 3, e15.10.1371/journal.ppat.0030015Suche in Google Scholar PubMed PubMed Central
Stauch, B., Hofmann, H., Perkovic, M., Weisel, M., Kopietz, F., Cichutek, K., Münk, C., and Schneider, G. (2009). Model structure of APOBEC3C reveals a binding pocket modulating ribonucleic acid interaction required for encapsidation. Proc. Natl. Acad. Sci. USA 106, 12079–12084.10.1073/pnas.0900979106Suche in Google Scholar PubMed PubMed Central
Stavrou, S., Nitta, T., Kotla, S., Ha, D., Nagashima, K., Rein, A.R., Fan, H., and Ross, S.R. (2013). Murine leukemia virus glycosylated Gag blocks apolipoprotein B editing complex 3 and cytosolic sensor access to the reverse transcription complex. Proc. Natl. Acad. Sci. USA 110, 9078–9083. doi: 10.1073/pnas.1217399110. [Epub 2013 May 13].10.1073/pnas.1217399110Suche in Google Scholar PubMed PubMed Central
Strebel, K. and Khan, M.A. (2008). APOBEC3G encapsidation into HIV-1 virions: which RNA is it? Retrovirology 5, 55.10.1186/1742-4690-5-55Suche in Google Scholar PubMed PubMed Central
Taylor, B.J., Nik-Zainal, S., Wu, Y.L., Stebbings, L.A., Raine, K., Campbell, P.J., Rada, C., Stratton, M.R., and Neuberger, M.S. (2013). DNA deaminases induce break-associated mutation showers with implication of APOBEC3B and 3A in breast cancer kataegis. Elife 2, e00534.10.7554/eLife.00534.017Suche in Google Scholar
Teh, A.H., Kimura, M., Yamamoto, M., Tanaka, N., Yamaguchi, I., and Kumasaka, T. (2006). The 1.48 A resolution crystal structure of the homotetrameric cytidine deaminase from mouse. Biochemistry 45, 7825–7833.10.1021/bi060345fSuche in Google Scholar PubMed
Wang, T., Zhang, W., Tian, C., Liu, B., Yu, Y., Ding, L., Spearman, P., and Yu, X.F. (2008). Distinct viral determinants for the packaging of human cytidine deaminases APOBEC3G and APOBEC3C. Virology 377, 71–79.10.1016/j.virol.2008.04.012Suche in Google Scholar PubMed PubMed Central
Wedekind, J.E., Gillilan, R., Janda, A., Krucinska, J., Salter, J.D., Bennett, R.P., Raina, J., and Smith, H.C. (2006). Nanostructures of APOBEC3G support a hierarchical assembly model of high molecular mass ribonucleoprotein particles from dimeric subunits. J. Biol. Chem. 281, 38122–38126.10.1074/jbc.C600253200Suche in Google Scholar PubMed PubMed Central
Wissing, S., Galloway, N.L., and Greene, W.C. (2010). HIV-1 Vif versus the APOBEC3 cytidine deaminases: an intracellular duel between pathogen and host restriction factors. Mol. Aspects Med. 31, 383–397.10.1016/j.mam.2010.06.001Suche in Google Scholar PubMed PubMed Central
Xiang, S., Short, S.A., Wolfenden, R., and Carter, C.W., Jr. (1997). The structure of the cytidine deaminase-product complex provides evidence for efficient proton transfer and ground-state destabilization. Biochemistry 36, 4768–4774.10.1021/bi963091eSuche in Google Scholar PubMed
Yu, X., Yu, Y., Liu, B., Luo, K., Kong, W., Mao, P., and Yu, X.F. (2003). Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science 302, 1056–1060.10.1126/science.1089591Suche in Google Scholar PubMed
Yu, Y., Xiao, Z., Ehrlich, E.S., Yu, X., and Yu, X.F. (2004). Selective assembly of HIV-1 Vif-Cul5-ElonginB-ElonginC E3 ubiquitin ligase complex through a novel SOCS box and upstream cysteines. Genes Dev. 18, 2867–2872.10.1101/gad.1250204Suche in Google Scholar PubMed PubMed Central
Zhang, K.L., Mangeat, B., Ortiz, M., Zoete, V., Trono, D., Telenti, A., and Michielin, O. (2007). Model structure of human APOBEC3G. PLoS One. 2, e378.10.1371/journal.pone.0000378Suche in Google Scholar PubMed PubMed Central
Zhang, W., Du, J., Evans, S.L., Yu, Y., and Yu, X.F. (2012). T-cell differentiation factor CBF-β regulates HIV-1 Vif-mediated evasion of host restriction. Nature 481, 376–379.10.1038/nature10718Suche in Google Scholar PubMed
©2013 by Walter de Gruyter Berlin Boston
Artikel in diesem Heft
- Masthead
- Masthead
- Guest Editorial
- Highlight: NRW Research School BioStruct – Biological Structures in Molecular Medicine and Biotechnology
- Highlight: NRW Research School Biostruct – Biological Structures in Molecular Medicine and Biotechnology
- Structural features of antiviral DNA cytidine deaminases
- Molecular insights into type I secretion systems
- Structural comparison of the transport units of type V secretion systems
- Rho-kinase: regulation, (dys)function, and inhibition
- Role of centrosomal adaptor proteins of the TACC family in the regulation of microtubule dynamics during mitotic cell division
- Revisiting Disrupted-in-Schizophrenia 1 as a scaffold protein
- Structural snapshot of cyclic nucleotide binding domains from cyclic nucleotide-sensitive ion channels
- Full-length Vpu and human CD4(372–433) in phospholipid bilayers as seen by magic angle spinning NMR
- Membrane protein stability depends on the concentration of compatible solutes – a single molecule force spectroscopic study
- Expression and characterisation of fully posttranslationally modified cellular prion protein in Pichia pastoris
- Contribution of distinct platelet integrins to binding, unfolding, and assembly of fibronectin
- Shear-related fibrillogenesis of fibronectin
- Enzyme-substrate complexes of the quinate/shikimate dehydrogenase from Corynebacterium glutamicum enable new insights in substrate and cofactor binding, specificity, and discrimination
- The amino acids surrounding the flavin 7a-methyl group determine the UVA spectral features of a LOV protein
- Determinants of the species selectivity of oxazolidinone antibiotics targeting the large ribosomal subunit
- NSR from Streptococcus agalactiae confers resistance against nisin and is encoded by a conserved nsr operon
Artikel in diesem Heft
- Masthead
- Masthead
- Guest Editorial
- Highlight: NRW Research School BioStruct – Biological Structures in Molecular Medicine and Biotechnology
- Highlight: NRW Research School Biostruct – Biological Structures in Molecular Medicine and Biotechnology
- Structural features of antiviral DNA cytidine deaminases
- Molecular insights into type I secretion systems
- Structural comparison of the transport units of type V secretion systems
- Rho-kinase: regulation, (dys)function, and inhibition
- Role of centrosomal adaptor proteins of the TACC family in the regulation of microtubule dynamics during mitotic cell division
- Revisiting Disrupted-in-Schizophrenia 1 as a scaffold protein
- Structural snapshot of cyclic nucleotide binding domains from cyclic nucleotide-sensitive ion channels
- Full-length Vpu and human CD4(372–433) in phospholipid bilayers as seen by magic angle spinning NMR
- Membrane protein stability depends on the concentration of compatible solutes – a single molecule force spectroscopic study
- Expression and characterisation of fully posttranslationally modified cellular prion protein in Pichia pastoris
- Contribution of distinct platelet integrins to binding, unfolding, and assembly of fibronectin
- Shear-related fibrillogenesis of fibronectin
- Enzyme-substrate complexes of the quinate/shikimate dehydrogenase from Corynebacterium glutamicum enable new insights in substrate and cofactor binding, specificity, and discrimination
- The amino acids surrounding the flavin 7a-methyl group determine the UVA spectral features of a LOV protein
- Determinants of the species selectivity of oxazolidinone antibiotics targeting the large ribosomal subunit
- NSR from Streptococcus agalactiae confers resistance against nisin and is encoded by a conserved nsr operon