Startseite Eternity and functionality – rational access to physiologically relevant cell lines
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Eternity and functionality – rational access to physiologically relevant cell lines

  • Christoph Lipps

    Christoph Lipps studied Biosystems Engineering at the Otto-von-Guericke University in Magdeburg, Germany (2005–2010). In 2010 he started his PhD thesis at the Helmholtz Centre for Infection Research in the group ‘Model Systems for Infection and Immunity’. He is working on the generation of hepatocyte cell lines with preserved hepatocyte specific phenotype in vitro and in vivo.

    , Tobias May

    Tobias May studied Biochemistry at the Martin Luther University in Halle-Wittenberg (1996–2001). Afterwards he did his PhD thesis at the former Gesellschaft für Biotechnologische Forschung GmbH on the development of a transcriptionally regulated system for conditional immortalization (2001–2005). Following this his work at the Helmholtz Centre for Infection Research focused on the development of novel technologies allowing an in vitro cell expansion of primary cell (2005–2009). In 2009 he co-founded the InSCREENeX GmbH, a spin-off from the HZI, which commercializes the physiologically relevant cell systems established by the different immortalization technologies.

    , Hansjörg Hauser

    Hansjörg Hauser graduated in Biology (Dr. rer. nat.) at the University of Konstanz, Germany. He completed his postdoctoral training at the Max-Planck-Institute for Molecular Genetics, Berlin, and at the German Cancer Research Center, Heidelberg and became staff scientist of the Helmholtz Centre for Infection Research, HZI (formerly Gesellschaft für Biotechnologische Forschung, GBF) where he assumed leading positions as head of Division Molecular Biotechnology and head of Department Gene Regulation and Differentiation. His expertise is molecular biology. He is active in translational research concerning gene expression in biotechnology and gene/cell therapies.

    EMAIL logo
    und Dagmar Wirth

    Dagmar Wirth studied chemistry and obtained her PhD in Molecular Biotechnology from the University of Braunschweig. She did her PostDoc at the Gesellschaft für Biotechnologische Forschung and the Medical University of Hannover. Since 2007 she is head of the research group ‘Model Systems for Infection and Immunity’ at the Helmholtz Centre for Infection Research. Her research focusses on the development of cell and mouse models for various questions in virology and immune biology. Special emphasis is laid on the development of novel cell based models by (conditional) immortalization which are employed in vitro as well as in vivo.

Veröffentlicht/Copyright: 16. Juli 2013

Abstract

In the first 50 years of cell culture, the development of new cell lines was mainly based on trial and error. Due to the understanding of the molecular networks of aging, senescence, proliferation, and adaption by mutation, the generation of new cell lines with physiologic properties has become more systematic. This endeavor has been supported by the availability of new technological achievements and increasing knowledge about the biology of cell differentiation and cell-cell communication. Here, we review some promising developments that are contributing toward this goal. These include molecular tools frequently used for the immortalization process. In addition to these broadly acting immortalization regimens, we focus on the developments of cell type-specific immortalization and on the methodologies of how to control the growth of newly established cell lines.


Corresponding author: Hansjörg Hauser, Department of Gene Regulation and Differentiation, Helmholtz Centre for Infection Research, Inhoffenstr. 7, D-38124 Braunschweig, Germany, e-mail:

About the authors

Christoph Lipps

Christoph Lipps studied Biosystems Engineering at the Otto-von-Guericke University in Magdeburg, Germany (2005–2010). In 2010 he started his PhD thesis at the Helmholtz Centre for Infection Research in the group ‘Model Systems for Infection and Immunity’. He is working on the generation of hepatocyte cell lines with preserved hepatocyte specific phenotype in vitro and in vivo.

Tobias May

Tobias May studied Biochemistry at the Martin Luther University in Halle-Wittenberg (1996–2001). Afterwards he did his PhD thesis at the former Gesellschaft für Biotechnologische Forschung GmbH on the development of a transcriptionally regulated system for conditional immortalization (2001–2005). Following this his work at the Helmholtz Centre for Infection Research focused on the development of novel technologies allowing an in vitro cell expansion of primary cell (2005–2009). In 2009 he co-founded the InSCREENeX GmbH, a spin-off from the HZI, which commercializes the physiologically relevant cell systems established by the different immortalization technologies.

Hansjörg Hauser

Hansjörg Hauser graduated in Biology (Dr. rer. nat.) at the University of Konstanz, Germany. He completed his postdoctoral training at the Max-Planck-Institute for Molecular Genetics, Berlin, and at the German Cancer Research Center, Heidelberg and became staff scientist of the Helmholtz Centre for Infection Research, HZI (formerly Gesellschaft für Biotechnologische Forschung, GBF) where he assumed leading positions as head of Division Molecular Biotechnology and head of Department Gene Regulation and Differentiation. His expertise is molecular biology. He is active in translational research concerning gene expression in biotechnology and gene/cell therapies.

Dagmar Wirth

Dagmar Wirth studied chemistry and obtained her PhD in Molecular Biotechnology from the University of Braunschweig. She did her PostDoc at the Gesellschaft für Biotechnologische Forschung and the Medical University of Hannover. Since 2007 she is head of the research group ‘Model Systems for Infection and Immunity’ at the Helmholtz Centre for Infection Research. Her research focusses on the development of cell and mouse models for various questions in virology and immune biology. Special emphasis is laid on the development of novel cell based models by (conditional) immortalization which are employed in vitro as well as in vivo.

References

Alani, R.M., Hasskarl, J., Grace, M., Hernandez, M.C., Israel, M.A., and Munger, K. (1999). Immortalization of primary human keratinocytes by the helix-loop-helix protein, Id-1. Proc. Natl. Acad. Sci. USA 96, 9637–9641.10.1073/pnas.96.17.9637Suche in Google Scholar

Allen, K.J., Reyes, R., Demmler, K., Mercer, J.F., Williamson, R., and Whitehead, R.H. (2000). Conditionally immortalized mouse hepatocytes for use in liver gene therapy. J. Gastroenterol. Hepatol. 15, 1325–1332.Suche in Google Scholar

Antonica, F., Kasprzyk, D.F., Opitz, R., Iacovino, M., Liao, X.H., Dumitrescu, A.M., Refetoff, S., Peremans, K., Manto, M., Kyba, M., et al. (2012). Generation of functional thyroid from embryonic stem cells. Nature 491, 66–71.10.1038/nature11525Suche in Google Scholar

Antonio, H.M., Mandarano, L.R., Coelho, A.A., Tiezzi, M.G., Andrade, J.M., and Tiezzi, D.G. (2013). Mouse renal 4T1 cell engraftment as a model to study the influence of hypoxia in breast cancer progression. Acta Cirurg. Brasil. 28, 142–147.10.1590/S0102-86502013000200010Suche in Google Scholar

Becker, P.D., Legrand, N., van Geelen, C.M., Noerder, M., Huntington, N.D., Lim, A., Yasuda, E., Diehl, S.A., Scheeren, F.A., Ott, M., et al. (2010). Generation of human antigen-specific monoclonal IgM antibodies using vaccinated ‘human immune system’ mice. PLoS ONE 5, e13137.10.1371/journal.pone.0013137Suche in Google Scholar

Blasco, M.A., Lee, H.W., Hande, M.P., Samper, E., Lansdorp, P.M., DePinho, R.A., and Greider, C.W. (1997). Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91, 25–34.10.1016/S0092-8674(01)80006-4Suche in Google Scholar

Blasi, E., Mathieson, B.J., Varesio, L., Cleveland, J.L., Borchert, P.A., and Rapp, U.R. (1985). Selective immortalization of murine macrophages from fresh bone marrow by a raf/myc recombinant murine retrovirus. Nature 318, 667–670.10.1038/318667a0Suche in Google Scholar

Blasi, E., Radzioch, D., Durum, S.K., and Varesio, L. (1987). A murine macrophage cell line, immortalized by v-raf and v-myc oncogenes, exhibits normal macrophage functions. Eur. J. Immunol. 17, 1491–1498.10.1002/eji.1830171016Suche in Google Scholar

Bodnar, A.G., Ouellette, M., Frolkis, M., Holt, S.E., Chiu, C.P., Morin, G.B., Harley, C.B., Shay, J.W., Lichtsteiner, S., and Wright, W.E. (1998). Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352.10.1126/science.279.5349.349Suche in Google Scholar

Cai, J., Ito, M., Westerman, K.A., Kobayashi, N., Leboulch, P., and Fox, I.J. (2000). Construction of a non-tumorigenic rat hepatocyte cell line for transplantation: reversal of hepatocyte immortalization by site-specific excision of the SV40 T antigen. J. Hepatol. 33, 701–708.10.1016/S0168-8278(00)80299-8Suche in Google Scholar

Castro-Gamero, A.M., Borges, K.S., Lira, R.C., Andrade, A.F., Fedatto, P.F., Cruzeiro, G.A., Silva, R.B., Fontes, A.M., Valera, E.T., Bobola, M., et al. (2013). Chromosomal heterogeneity and instability characterize pediatric medulloblastoma cell lines and affect neoplastic phenotype. Cytotechnology. DOI 10.1007/s10616-012-9529-z.10.1007/s10616-012-9529-zSuche in Google Scholar PubMed PubMed Central

Cesare, A.J. and Reddel, R.R. (2010). Alternative lengthening of telomeres: models, mechanisms and implications. Nat. Rev. Genet. 11, 319–330.10.1038/nrg2763Suche in Google Scholar PubMed

Chang, B.D., Watanabe, K., Broude, E.V., Fang, J., Poole, J.C., Kalinichenko, T.V., and Roninson, I.B. (2000). Effects of p21Waf1/Cip1/Sdi1 on cellular gene expression: implications for carcinogenesis, senescence, and age-related diseases. Proc. Natl. Acad. Sci. USA 97, 4291–4296.10.1073/pnas.97.8.4291Suche in Google Scholar PubMed PubMed Central

D’Addario, I., Abbruzzese, C., Lo Iacono, M., Teson, M., Golisano, O., and Barone, V. (2010). Overexpression of YAP1 induces immortalization of normal human keratinocytes by blocking clonal evolution. Histochem. Cell Biol. 134, 265–276.10.1007/s00418-010-0728-4Suche in Google Scholar PubMed

Damia, G. and D’Incalci, M. (2010). Genetic instability influences drug response in cancer cells. Curr. Drug Targets 11, 1317–1324.10.2174/1389450111007011317Suche in Google Scholar PubMed

De Filippis, L., Ferrari, D., Rota Nodari, L., Amati, B., Snyder, E., and Vescovi, A.L. (2008). Immortalization of human neural stem cells with the c-myc mutant T58A. PLoS ONE 3, e3310.10.1371/journal.pone.0003310Suche in Google Scholar PubMed PubMed Central

Fussenegger, M., Schlatter, S., Datwyler, D., Mazur, X., and Bailey, J.E. (1998). Controlled proliferation by multigene metabolic engineering enhances the productivity of Chinese hamster ovary cells. Nat. Biotechnol. 16, 468–472.10.1038/nbt0598-468Suche in Google Scholar PubMed

Gazdar, A.F., Butel, J.S., and Carbone, M. (2002). SV40 and human tumours: myth, association or causality? Nat. Rev. Cancer 2, 957–964.10.1038/nrc947Suche in Google Scholar PubMed

Gossen, M. and Bujard, H. (1992). Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89, 5547–5551.10.1073/pnas.89.12.5547Suche in Google Scholar PubMed PubMed Central

Gossen, M., Freundlieb, S., Bender, G., Muller, G., Hillen, W., and Bujard, H. (1995). Transcriptional activation by tetracyclines in mammalian cells. Science (New York, NY) 268, 1766–1769.10.1126/science.7792603Suche in Google Scholar PubMed

Graham, F.L., Smiley, J., Russell, W.C., and Nairn, R. (1977). Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 36, 59–74.10.1099/0022-1317-36-1-59Suche in Google Scholar PubMed

Haga, K., Ohno, S., Yugawa, T., Narisawa-Saito, M., Fujita, M., Sakamoto, M., Galloway, D.A., and Kiyono, T. (2007). Efficient immortalization of primary human cells by p16INK4a-specific short hairpin RNA or Bmi-1, combined with introduction of hTERT. Cancer Sci. 98, 147–154.10.1111/j.1349-7006.2006.00373.xSuche in Google Scholar PubMed

Hahn, W.C. and Weinberg, R.A. (2002). Rules for making human tumor cells. N. Engl. J. Med. 347, 1593–1603.10.1056/NEJMra021902Suche in Google Scholar PubMed

Halbert, C.L., Demers, G.W., and Galloway, D.A. (1991). The E7 gene of human papillomavirus type 16 is sufficient for immortalization of human epithelial cells. J. Vir. 65, 473–478.10.1128/jvi.65.1.473-478.1991Suche in Google Scholar

Heng, H.H., Liu, G., Stevens, J.B., Abdallah, B.Y., Horne, S.D., Ye, K.J., Bremer, S.W., Chowdhury, S.K., and Ye, C.J. (2013). Karyotype heterogeneity and unclassified chromosomal abnormalities. Cytogenet. Genome Res. 139, 144–157.10.1159/000348682Suche in Google Scholar PubMed

Horton, S.J., Jaques, J., Woolthuis, C., van Dijk, J., Mesuraca, M., Huls, G., Morrone, G., Vellenga, E., and Schuringa, J.J. (2013). MLL-AF9-mediated immortalization of human hematopoietic cells along different lineages changes during ontogeny. Leukemia 27, 1116–1126.10.1038/leu.2012.343Suche in Google Scholar PubMed

Huh, D., Matthews, B.D., Mammoto, A., Montoya-Zavala, M., Hsin, H.Y., and Ingber, D.E. (2010). Reconstituting organ-level lung functions on a chip. Science (New York, NY) 328, 1662–1668.10.1126/science.1188302Suche in Google Scholar PubMed PubMed Central

Humme, D., Beyer, M., Rowert-Huber, H.J., Sterry, W., and Philipp, S. (2013). CD30-positive anaplastic large cell T-cell lymphoma developing during immunosuppressive therapy of pityriasis rubra pilaris with ustekinumab. Hautarzt 64, 190–194.10.1007/s00105-012-2526-5Suche in Google Scholar PubMed

Istvanffy, R. and Oostendorp, R.A. (2013). Generation and establishment of murine adherent cell lines. Methods Mol. Biol. 946, 301–314.10.1007/978-1-62703-128-8_19Suche in Google Scholar PubMed

Ivanovic, Z. (2009). Hypoxia or in situ normoxia: the stem cell paradigm. J. Cell. Physiol. 219, 271–275.10.1002/jcp.21690Suche in Google Scholar PubMed

Janson, C., Romanova, L., Hansen, E., Hubel, A., and Lam, C. (2011). Immortalization and functional characterization of rat arachnoid cell lines. Neuroscience 177, 23–34.10.1016/j.neuroscience.2010.12.035Suche in Google Scholar PubMed

Jat, P.S. and Sharp, P.A. (1989). Cell lines established by a temperature-sensitive Simian virus 40 large-T-antigen gene are growth restricted at the nonpermissive temperature. Mol. Cell. Biol. 9, 1672–1681.Suche in Google Scholar

Jat, P.S., Noble, M.D., Ataliotis, P., Tanaka, Y., Yannoutsos, N., Larsen, L., and Kioussis, D. (1991). Direct derivation of conditionally immortal cell lines from an H-2Kb-tsA58 transgenic mouse. Proc. Natl. Acad. Sci. USA 88, 5096–5100.10.1073/pnas.88.12.5096Suche in Google Scholar PubMed PubMed Central

Kirchhoff, S., Schaper, F., and Hauser, H. (1993). Interferon regulatory factor 1 (IRF-1) mediates cell growth inhibition by transactivation of downstream target genes. Nucleic Acids Res. 21, 2881–2889.10.1093/nar/21.12.2881Suche in Google Scholar PubMed PubMed Central

Kiyono, T., Foster, S.A., Koop, J.I., McDougall, J.K., Galloway, D.A., and Klingelhutz, A.J. (1998). Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396, 84–88.10.1038/23962Suche in Google Scholar PubMed

Klochendler, A., Weinberg-Corem, N., Moran, M., Swisa, A., Pochet, N., Savova, V., Vikeså, J., Van de Peer, Y., Brandeis, M., Regev, A., et al. (2012). A transgenic mouse marking live replicating cells reveals in vivo transcriptional program of proliferation. Dev. Cell 23, 681–690.10.1016/j.devcel.2012.08.009Suche in Google Scholar PubMed

Koch, C.M., Reck, K., Shao, K., Lin, Q., Joussen, S., Ziegler, P., Walenda, G., Drescher, W., Opalka, B., May, T., et al. (2013). Pluripotent stem cells escape from senescence-associated DNA methylation changes. Genome Res. 23, 248–259.10.1101/gr.141945.112Suche in Google Scholar PubMed PubMed Central

Kohno, S., Murata, T., Koide, N., Hikita, K., and Kaneda, N. (2011). Establishment and characterization of a noradrenergic adrenal chromaffin cell line, tsAM5NE, immortalized with the temperature-sensitive SV40 T-antigen. Cell Biol. Int. 35, 325–334.10.1042/CBI20090344Suche in Google Scholar PubMed

Köster, M., Kirchhoff, S., Schaper, F., and Hauser, H. (1995). Proliferation control of mammalian cells by the tumor suppressor IRF-1. Cytotechnology 18, 67–75.10.1007/BF00744321Suche in Google Scholar PubMed

Kwakkenbos, M.J., Diehl, S.A., Yasuda, E., Bakker, A.Q., van Geelen, C.M., Lukens, M.V., van Bleek, G.M., Widjojoatmodjo, M.N., Bogers, W.M., Mei, H., et al. (2010). Generation of stable monoclonal antibody-producing B cell receptor-positive human memory B cells by genetic programming. Nat. Med. 16, 123–128.10.1038/nm.2071Suche in Google Scholar PubMed PubMed Central

Langley, R.R., Ramirez, K.M., Tsan, R.Z., Van Arsdall, M., Nilsson, M.B., and Fidler, I.J. (2003). Tissue-specific microvascular endothelial cell lines from H-2K(b)-tsA58 mice for studies of angiogenesis and metastasis. Cancer Res. 63, 2971–2976.Suche in Google Scholar

Langley, R.R., Fan, D., Guo, L., Zhang, C., Lin, Q., Brantley, E.C., McCarty, J.H., and Fidler, I.J. (2009). Generation of an immortalized astrocyte cell line from H-2Kb-tsA58 mice to study the role of astrocytes in brain metastasis. Int. J. Oncol. 35, 665–672.10.3892/ijo_00000378Suche in Google Scholar PubMed PubMed Central

Liu, X., Dakic, A., Chen, R., Disbrow, G.L., Zhang, Y., Dai, Y., and Schlegel, R. (2008). Cell-restricted immortalization by human papillomavirus correlates with telomerase activation and engagement of the hTERT promoter by Myc. J. Virol. 82, 11568–11576.10.1128/JVI.01318-08Suche in Google Scholar PubMed PubMed Central

Loiola, R.A., Torres, T.C., Aburaya, C.M., Landgraf, M.A., Landgraf, R.G., Bosco Pesquero, J., and Fernandes, L. (2013). Generation and characterization of a spontaneously immortalized endothelial cell line from mice microcirculation. Exp. Cell Res. 319, 1102–1110.10.1016/j.yexcr.2013.01.022Suche in Google Scholar

Louis, N., Evelegh, C., and Graham, F.L. (1997). Cloning and sequencing of the cellular-viral junctions from the human adenovirus type 5 transformed 293 cell line. Virology 233, 423–429.10.1006/viro.1997.8597Suche in Google Scholar

Lundberg, A.S., Randell, S.H., Stewart, S.A., Elenbaas, B., Hartwell, K.A., Brooks, M.W., Fleming, M.D., Olsen, J.C., Miller, S.W., Weinberg, R.A., et al. (2002). Immortalization and transformation of primary human airway epithelial cells by gene transfer. Oncogene 21, 4577–4586.10.1038/sj.onc.1205550Suche in Google Scholar

MacKenzie, K.L., Franco, S., Naiyer, A.J., May, C., Sadelain, M., Rafii, S., and Moore, M.A. (2002). Multiple stages of malignant transformation of human endothelial cells modelled by co-expression of telomerase reverse transcriptase, SV40 T antigen and oncogenic N-ras. Oncogene 21, 4200–4211.10.1038/sj.onc.1205425Suche in Google Scholar

May, T., Hauser, H., and Wirth, D. (2004). Transcriptional control of SV40 T-antigen expression allows a complete reversion of immortalization. Nucleic Acids Res. 32, 5529–5538.10.1093/nar/gkh887Suche in Google Scholar

May, T., Mueller, P.P., Weich, H., Froese, N., Deutsch, U., Wirth, D., Kroger, A., and Hauser, H. (2005a). Establishment of murine cell lines by constitutive and conditional immortalization. J. Biotechnol. 120, 99–110.10.1016/j.jbiotec.2005.03.027Suche in Google Scholar

May, T., Wirth, D., Hauser, H., and Mueller, P.P. (2005b). Transcriptionally regulated immortalization overcomes side effects of temperature-sensitive SV40 large T antigen. Biochem. Biophys. Res. Commun. 327, 734–741.10.1016/j.bbrc.2004.12.065Suche in Google Scholar

May, T., Eccleston, L., Herrmann, S., Hauser, H., Goncalves, J., and Wirth, D. (2008). Bimodal and hysteretic expression in mammalian cells from a synthetic gene circuit. PLoS ONE 3, e2372.10.1371/journal.pone.0002372Suche in Google Scholar

May, T., Butueva, M., Bantner, S., Markusic, D., Seppen, J., MacLeod, R.A., Weich, H., Hauser, H., and Wirth, D. (2010). Synthetic gene regulation circuits for control of cell expansion. Tissue Eng. Part A 16, 441–452.10.1089/ten.tea.2009.0184Suche in Google Scholar

McLean, J.S. (1993). Improved techniques for immortalizing animal cells. Trends Biotechnol. 11, 232–238.10.1016/0167-7799(93)90134-USuche in Google Scholar

Milyavsky, M., Shats, I., Erez, N., Tang, X., Senderovich, S., Meerson, A., Tabach, Y., Goldfinger, N., Ginsberg, D., Harris, C.C., et al. (2003). Prolonged culture of telomerase-immortalized human fibroblasts leads to a premalignant phenotype. Cancer Res. 63, 7147–7157.Suche in Google Scholar

Morgan, J.E., Beauchamp, J.R., Pagel, C.N., Peckham, M., Ataliotis, P., Jat, P.S., Noble, M.D., Farmer, K., and Partridge, T.A. (1994). Myogenic cell lines derived from transgenic mice carrying a thermolabile T antigen: a model system for the derivation of tissue-specific and mutation-specific cell lines. Dev. Biol. 162, 486–498.10.1006/dbio.1994.1103Suche in Google Scholar PubMed

Munger, K., Baldwin, A., Edwards, K.M., Hayakawa, H., Nguyen, C.L., Owens, M., Grace, M., and Huh, K. (2004). Mechanisms of human papillomavirus-induced oncogenesis. J. Virol. 78, 11451–11460.10.1128/JVI.78.21.11451-11460.2004Suche in Google Scholar PubMed PubMed Central

Narushima, M., Okitsu, T., Miki, A., Yong, C., Kobayashi, K., Yonekawa, Y., Tanaka, K., Ikeda, H., Matsumoto, S., Tanaka, N., et al. (2004). Adenovirus mediated gene transduction of primarily isolated mouse islets. ASAIO J. 50, 586–590.10.1097/01.MAT.0000142877.18621.BCSuche in Google Scholar PubMed

Narushima, M., Kobayashi, N., Okitsu, T., Tanaka, Y., Li, S.A., Chen, Y., Miki, A., Tanaka, K., Nakaji, S., Takei, K., et al. (2005). A human beta-cell line for transplantation therapy to control type 1 diabetes. Nat. Biotechnol. 23, 1274–1282.10.1038/nbt1145Suche in Google Scholar PubMed

Newbold, R.F. (2002). The significance of telomerase activation and cellular immortalization in human cancer. Mutagenesis 17, 539–550.10.1093/mutage/17.6.539Suche in Google Scholar PubMed

Niccoli, S., Abraham, S., Richard, C., and Zehbe, I. (2012). The Asian-American E6 variant protein of human papillomavirus 16 alone is sufficient to promote immortalization, transformation, and migration of primary human foreskin keratinocytes. J. Vir. 86, 12384–12396.10.1128/JVI.01512-12Suche in Google Scholar PubMed PubMed Central

Nickoloff, B.J., Chaturvedi, V., Bacon, P., Qin, J.Z., Denning, M.F., and Diaz, M.O. (2000). Id-1 delays senescence but does not immortalize keratinocytes. J. Biol. Chem. 275, 27501–27504.10.1074/jbc.C000311200Suche in Google Scholar PubMed

Noble, M., Groves, A.K., Ataliotis, P., Ikram, Z., and Jat, P.S. (1995). The H-2KbtsA58 transgenic mouse: a new tool for the rapid generation of novel cell lines. Transgenic Res. 4, 215–225.10.1007/BF01969114Suche in Google Scholar PubMed

Nonet, G.H., Stampfer, M.R., Chin, K., Gray, J.W., Collins, C.C., and Yaswen, P. (2001). The ZNF217 gene amplified in breast cancers promotes immortalization of human mammary epithelial cells. Cancer Res. 61, 1250–1254.Suche in Google Scholar

Obinata, M. (1997). Conditionally immortalized cell lines with differentiated functions established from temperature-sensitive T-antigen transgenic mice. Genes Cells 2, 235–244.10.1046/j.1365-2443.1997.1160314.xSuche in Google Scholar PubMed

Obinata, M. (2001). Possible applications of conditionally immortalized tissue cell lines with differentiation functions. Biochem. Biophys. Res. Commun. 286, 667–672.10.1006/bbrc.2001.5247Suche in Google Scholar PubMed

Oostendorp, R.A., Medvinsky, A.J., Kusadasi, N., Nakayama, N., Harvey, K., Orelio, C., Ottersbach, K., Covey, T., Ploemacher, R.E., Saris, C., et al. (2002). Embryonal subregion-derived stromal cell lines from novel temperature-sensitive SV40 T antigen transgenic mice support hematopoiesis. J. Cell Sci. 115, 2099–2108.10.1242/jcs.115.10.2099Suche in Google Scholar PubMed

Pipas, J.M. (2009). SV40: cell transformation and tumorigenesis. Virology 384, 294–303.10.1016/j.virol.2008.11.024Suche in Google Scholar PubMed

Piper, S.L., Wang, M., Yamamoto, A., Malek, F., Luu, A., Kuo, A.C., and Kim, H.T. (2012). Inducible immortality in hTERT-human mesenchymal stem cells. J. Orthop. Res. 30, 1879–1885.10.1002/jor.22162Suche in Google Scholar PubMed

Rangarajan, A., Hong, S.J., Gifford, A., and Weinberg, R.A. (2004). Species- and cell type-specific requirements for cellular transformation. Cancer Cell 6, 171–183.10.1016/j.ccr.2004.07.009Suche in Google Scholar PubMed

Ray, R.B., Meyer, K., and Ray, R. (2000). Hepatitis C virus core protein promotes immortalization of primary human hepatocytes. Virology 271, 197–204.10.1006/viro.2000.0295Suche in Google Scholar PubMed

Rowe, C., Goldring, C.E., Kitteringham, N.R., Jenkins, R.E., Lane, B.S., Sanderson, C., Elliott, V., Platt, V., Metcalfe, P., and Park, B.K. (2010). Network analysis of primary hepatocyte dedifferentiation using a shotgun proteomics approach. J. Proteome Res. 9, 2658–2668.10.1021/pr1001687Suche in Google Scholar PubMed

Rybkin, II, Markham, D.W., Yan, Z., Bassel-Duby, R., Williams, R.S., and Olson, E.N. (2003). Conditional expression of SV40 T-antigen in mouse cardiomyocytes facilitates an inducible switch from proliferation to differentiation. J. Biol. Chem. 278, 15927–15934.10.1074/jbc.M213102200Suche in Google Scholar PubMed

Sherman, L., Sleeman, J.P., Hennigan, R.F., Herrlich, P., and Ratner, N. (1999). Overexpression of activated neu/erbB2 initiates immortalization and malignant transformation of immature Schwann cells in vitro. Oncogene 18, 6692–6699.10.1038/sj.onc.1203055Suche in Google Scholar PubMed

Simonsen, J.L., Rosada, C., Serakinci, N., Justesen, J., Stenderup, K., Rattan, S.I., Jensen, T.G., and Kassem, M. (2002). Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat. Biotechnol. 20, 592–596.10.1038/nbt0602-592Suche in Google Scholar PubMed

Sonna, L.A., Cullivan, M.L., Sheldon, H.K., Pratt, R.E., and Lilly, C.M. (2003). Effect of hypoxia on gene expression by human hepatocytes (HepG2). Physiol. Genom. 12, 195–207.10.1152/physiolgenomics.00104.2002Suche in Google Scholar PubMed

Stepanenko, A.A. and Kavsan, V.M. (2012). Immortalization and malignant transformation of eukaryotic cells. Tsitol. Genet. 46, 36–75.10.3103/S0095452712020041Suche in Google Scholar

Stevens, J.B., Horne, S.D., Abdallah, B.Y., Ye, C.J., and Heng, H.H. (2013). Chromosomal instability and transcriptome dynamics in cancer. Cancer Metastasis Rev. DOI 10.1007/s10555-013-9428-6.10.1007/s10555-013-9428-6Suche in Google Scholar PubMed

Sykes, D.B. and Kamps, M.P. (2001). Estrogen-dependent E2a/Pbx1 myeloid cell lines exhibit conditional differentiation that can be arrested by other leukemic oncoproteins. Blood 98, 2308–2318.10.1182/blood.V98.8.2308Suche in Google Scholar PubMed

Tegtmeyer, P., Schwartz, M., Collins, J.K., and Rundell, K. (1975). Regulation of tumor antigen synthesis by Simian virus 40 gene A. J. Virol. 16, 168–178.10.1128/jvi.16.1.168-178.1975Suche in Google Scholar PubMed PubMed Central

Thomas, M., Yang, L., and Hornsby, P.J. (2000). Formation of functional tissue from transplanted adrenocortical cells expressing telomerase reverse transcriptase. Nat. Biotechnol. 18, 39–42.10.1038/71894Suche in Google Scholar PubMed

Todaro, G.J., Wolman, S.R., and Green, H. (1963). Rapid transformation of human fibroblasts with low growth potential into established cell lines by SV40. J. Cell. Physiol. 62, 257–265.10.1002/jcp.1030620305Suche in Google Scholar PubMed

Traggiai, E. (2012). Immortalization of human B cells: analysis of B cell repertoire and production of human monoclonal antibodies. Methods Mol. Biol. 901, 161–170.10.1007/978-1-61779-931-0_10Suche in Google Scholar PubMed PubMed Central

Urlinger, S., Baron, U., Thellmann, M., Hasan, M.T., Bujard, H., and Hillen, W. (2000). Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Proc. Natl. Acad. Sci. USA 97, 7963–7968.10.1073/pnas.130192197Suche in Google Scholar PubMed PubMed Central

Villa, A., Snyder, E.Y., Vescovi, A., and Martinez-Serrano, A. (2000). Establishment and properties of a growth factor-dependent, perpetual neural stem cell line from the human CNS. Exp. Neurol. 161, 67–84.10.1006/exnr.1999.7237Suche in Google Scholar PubMed

Wang, G.G., Calvo, K.R., Pasillas, M.P., Sykes, D.B., Hacker, H., and Kamps, M.P. (2006). Quantitative production of macrophages or neutrophils ex vivo using conditional Hoxb8. Nat. Methods 3, 287–293.10.1038/nmeth865Suche in Google Scholar PubMed

Wang, M.L., Walsh, R., Robinson, K.L., Burchard, J., Bartz, S.R., Cleary, M., Galloway, D.A., and Grandori, C. (2011). Gene expression signature of c-MYC-immortalized human fibroblasts reveals loss of growth inhibitory response to TGFbeta. Cell Cycle (Georgetown, TX) 10, 2540–2548.10.4161/cc.10.15.16309Suche in Google Scholar

Wenger, R.H. (2002). Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J. 16, 1151–1162.10.1096/fj.01-0944revSuche in Google Scholar

Westerman, K.A. and Leboulch, P. (1996). Reversible immortalization of mammalian cells mediated by retroviral transfer and site-specific recombination. Proc. Natl. Acad. Sci. USA 93, 8971–8976.10.1073/pnas.93.17.8971Suche in Google Scholar

Westfall, S.D., Sachdev, S., Das, P., Hearne, L.B., Hannink, M., Roberts, R.M., and Ezashi, T. (2008). Identification of oxygen-sensitive transcriptional programs in human embryonic stem cells. Stem Cells Dev. 17, 869–881.10.1089/scd.2007.0240Suche in Google Scholar

Wikenheiser, K.A., Vorbroker, D.K., Rice, W.R., Clark, J.C., Bachurski, C.J., Oie, H.K., and Whitsett, J.A. (1993). Production of immortalized distal respiratory epithelial cell lines from surfactant protein C/Simian virus 40 large tumor antigen transgenic mice. Proc. Natl. Acad. Sci. USA 90, 11029–11033.10.1073/pnas.90.23.11029Suche in Google Scholar

Williams, R.L., Risau, W., Zerwes, H.G., Drexler, H., Aguzzi, A., and Wagner, E.F. (1989). Endothelioma cells expressing the polyoma middle T oncogene induce hemangiomas by host cell recruitment. Cell 57, 1053–1063.10.1016/0092-8674(89)90343-7Suche in Google Scholar

Wu, H.L., Wang, Y., Zhang, P., Li, S.F., Chen, X., Chen, Y.K., Li, J.G., Yang, S.M., Su, Y.P., Wang, J.P., et al. (2011). Reversible immortalization of rat pancreatic beta cells with a novel immortalizing and tamoxifen-mediated self-recombination tricistronic vector. J. Biotechnol. 151, 231–241.10.1016/j.jbiotec.2010.12.003Suche in Google Scholar

Yanai, N., Suzuki, M., and Obinata, M. (1991). Hepatocyte cell lines established from transgenic mice harboring temperature-sensitive Simian virus 40 large T-antigen gene. Exp. Cell Res. 197, 50–56.10.1016/0014-4827(91)90478-DSuche in Google Scholar

Yang, J., Nagavarapu, U., Relloma, K., Sjaastad, M.D., Moss, W.C., Passaniti, A., and Herron, G.S. (2001). Telomerized human microvasculature is functional in vivo. Nat. Biotechnol. 19, 219–224.10.1038/85655Suche in Google Scholar PubMed

Zeisig, B.B., Milne, T., Garcia-Cuellar, M.P., Schreiner, S., Martin, M.E., Fuchs, U., Borkhardt, A., Chanda, S.K., Walker, J., Soden, R., et al. (2004). Hoxa9 and Meis1 are key targets for MLL-ENL-mediated cellular immortalization. Mol. Cell. Biol. 24, 617–628.10.1128/MCB.24.2.617-628.2004Suche in Google Scholar PubMed PubMed Central

Zhang, Y., Nuglozeh, E., Toure, F., Schmidt, A.M., and Vunjak-Novakovic, G. (2009). Controllable expansion of primary cardiomyocytes by reversible immortalization. Hum. Gene Ther. 20, 1687–1696.10.1089/hum.2009.057Suche in Google Scholar PubMed PubMed Central

Zhao, X., Lu, L., Pokhriyal, N., Ma, H., Duan, L., Lin, S., Jafari, N., Band, H., and Band, V. (2009). Overexpression of RhoA induces preneoplastic transformation of primary mammary epithelial cells. Cancer Res. 69, 483–491.10.1158/0008-5472.CAN-08-2907Suche in Google Scholar PubMed PubMed Central

Zhou, K., Koike, C., Yoshida, T., Okabe, M., Fathy, M., Kyo, S., Kiyono, T., Saito, S., and Nikaido, T. (2013). Establishment and characterization of immortalized human amniotic epithelial cells. Cell. Reprogramming 15, 55–67.10.1089/cell.2012.0021Suche in Google Scholar PubMed PubMed Central

Received: 2013-4-9
Accepted: 2013-7-11
Published Online: 2013-07-16
Published in Print: 2013-12-01

©2013 by Walter de Gruyter Berlin Boston

Heruntergeladen am 24.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2013-0158/html
Button zum nach oben scrollen