Startseite Lebenswissenschaften The nuclear receptor peroxisome proliferator-activated receptor-γ promotes oligodendrocyte differentiation through mechanisms involving mitochondria and oscillatory Ca2+ waves
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The nuclear receptor peroxisome proliferator-activated receptor-γ promotes oligodendrocyte differentiation through mechanisms involving mitochondria and oscillatory Ca2+ waves

  • Antonietta Bernardo , Roberta De Simone , Chiara De Nuccio , Sergio Visentin und Luisa Minghetti EMAIL logo
Veröffentlicht/Copyright: 14. Juni 2013

Abstract

Peroxisome proliferator-activated receptor-γ (PPAR-γ) is one of the most studied nuclear receptor since its identification as a target to treat metabolic and neurological diseases. In addition to exerting anti-inflammatory and neuroprotective effects, PPAR-γ agonists, such as the insulin-sensitizing drug pioglitazone, promote the differentiation of oligodendrocytes (OLs), the myelin-forming cells of the central nervous system (CNS). In addition, PPAR-γ agonists increase OL mitochondrial respiratory chain activity and OL’s ability to respond to environmental signals with oscillatory Ca2+ waves. Both OL maturation and oscillatory Ca2+ waves are prevented by the mitochondrial inhibitor rotenone and restored by PPAR-γ agonists, suggesting that PPAR-γ promotes myelination through mechanisms involving mitochondria.


Corresponding author: Luisa Minghetti, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161 Rome, Italy, e-mail:

This study was supported by FISM – Fondazione Italiana Sclerosi Multipla, Grant 2011/R/15.

References

Back, S.A., Han, B.H., Luo, N.L., Chricton, C.A., Xanthoudakis, S., Tam, J., Arvin, K.L., and Holtzman, D.M. (2002). Selective vulnerability of late oligodendrocyte progenitors to hypoxia-ischemia. J. Neurosci. 22, 455–463.10.1523/JNEUROSCI.22-02-00455.2002Suche in Google Scholar PubMed PubMed Central

Baumann, N. and Pham-Dinh, D. (2001). Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol. Rev. 81, 871–927.10.1152/physrev.2001.81.2.871Suche in Google Scholar PubMed

Bernardo, A. and Minghetti, L. (2006). PPAR-γ agonists as regulators of microglial activation and brain inflammation. Curr. Pharm. Des. 12, 93–109.10.2174/138161206780574579Suche in Google Scholar PubMed

Bernardo, A. and Minghetti, L. (2008). Regulation of glial cell functions by PPAR-gamma natural and synthetic agonists. PPAR Res. 2008:864140, doi: 10.1155/2008/864140.10.1155/2008/864140Suche in Google Scholar PubMed PubMed Central

Bernardo, A., Greco, A., Levi, G., and Minghetti, L. (2003). Differential lipid peroxidation, Mn superoxide, and bcl-2 expression contribute to the maturation-dependent vulnerability of oligodendrocytes to oxidative stress. J. Neuropathol. Exp. Neurol. 62, 509–519.10.1093/jnen/62.5.509Suche in Google Scholar PubMed

Bernardo, A., Bianchi, D., Magnaghi, V., and Minghetti, L. (2009). Peroxisome proliferator-activated receptor-gamma agonists promote differentiation and antioxidant defenses of oligodendrocyte progenitor cells. J. Neuropathol. Exp. Neurol. 68, 797–808.10.1097/NEN.0b013e3181aba2c1Suche in Google Scholar PubMed

Berridge, M.J., Bootman, M.D., and Roderick, H.L. (2003). Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell. Biol. 4, 517–529.10.1038/nrm1155Suche in Google Scholar PubMed

Brookes, P.S., Yoon, Y., Robotham, J.L., Anders, M.W., and Sheu, S.S. (2004). Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am. J. Physiol. Cell. Physiol. 287, C817–C833.10.1152/ajpcell.00139.2004Suche in Google Scholar PubMed

Cariou, B., Charbonnel, B., and Staels, B. (2012). Thiazolidinediones and PPARγ agonists: time for a reassessment. Trends Endocrinol. Metab. 23, 205–215.10.1016/j.tem.2012.03.001Suche in Google Scholar PubMed

Chin, E.R. (2004). The role of calcium and calcium/calmodulin-dependent kinases in skeletal muscle plasticity and mitochondrial biogenesis. Proc. Nutr. Soc. 63, 279–286.10.1079/PNS2004335Suche in Google Scholar PubMed

De Nuccio, C., Bernardo, A., De Simone, R., Mancuso, E., Magnaghi, V., Visentin, S., and Minghetti, L. (2011). Peroxisome proliferator-activated receptor γ agonists accelerate oligodendrocyte maturation and influence mitochondrial functions and oscillatory Ca2+ waves. J. Neuropathol. Exp. Neurol. 70, 900–912.10.1097/NEN.0b013e3182309ab1Suche in Google Scholar

Dent, M.A., Raisman, G., and Lai, F.A. (1996). Expression of type 1 inositol 1,4,5-trisphosphate receptor during axogenesis and synaptic contact in the central and peripheral nervous system of developing rat. Development 122, 1029–1039.10.1242/dev.122.3.1029Suche in Google Scholar

Ghisletti, S., Huang, W., Ogawa, S., Pascual, G., Lin, M.E., Willson, T,M., Rosenfeld, M.G., and Glass, C.K. (2007). Parallel SUMOylation-dependent pathways mediate gene- and signal-specific transrepression by LXRs and PPARγ. Mol. Cell. 25, 57–70.10.1016/j.molcel.2006.11.022Suche in Google Scholar

Glass, C.K. and Saijo, K. (2010). Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nat Rev Immunol. 10, 365–376.10.1038/nri2748Suche in Google Scholar

Granneman, J. G., Skoff, R., and Yang, X. (1998). Member of the peroxisomes proliferator-activated receptor family of transcription factors is differentially expressed by oligodendrocytes. J. Neurosci. Res. 51, 563–573.10.1002/(SICI)1097-4547(19980301)51:5<563::AID-JNR3>3.0.CO;2-DSuche in Google Scholar

Haak, L.L., Grimaldi, M., and Russell, J.T. (2000). Mitochondria in myelinating cells: calcium signaling in oligodendrocyte precursor cells. Cell Calcium 28, 297–306.10.1054/ceca.2000.0176Suche in Google Scholar

Heneka, M.T., Landreth, G.E., and Hull, M. (2007). Drug Insight: effects mediated by peroxisome proliferator-activated receptor-γ in CNS disorders. Nature Clin. Pract. Neurol. 3, 496–504.10.1038/ncpneuro0586Suche in Google Scholar

Levi, G., Aloisi, F., and Wilkin, G.P. (1987). Differentiation of cerebellar bipotential glial precursors into oligodendrocytes in primary culture: developmental profile of surface antigens and mitotic activity. J. Neurosci. Res. 18, 407–417.10.1002/jnr.490180305Suche in Google Scholar

Miyakawa, T., Maeda, A., Yamazawa, T., Hirose, K., Kurosaki, T., and Iino, M. (1999). Encoding of Ca2+ signals by differential expression of IP3 receptor subtypes. EMBO J. 18, 1303–1308.10.1093/emboj/18.5.1303Suche in Google Scholar

Neumann, A., Weill, A., Ricordeau, P., Fagot, J.P., Alla, F., and Allemand, H. (2012). Pioglitazone and risk of bladder cancer among diabetic patients in France: a population-based cohort study. Diabetologia. 55, 1953–1962.10.1007/s00125-012-2538-9Suche in Google Scholar

Robb-Gaspers, L.D., Burnett, P., Rutter, G.A., Denton, R.M., Rizzuto, R., and Thomas A.P. (1998). Integrating cytosolic calcium signals into mitochondrial metabolic responses. EMBO J. 17, 4987–5000.10.1093/emboj/17.17.4987Suche in Google Scholar PubMed PubMed Central

Roth, A.D., Leisewitz, A.V., Jung, J.E., Cassina, P., Barbeito, L., Inestrosa, N.C., and Bronfman, M. (2003). PPAR gamma activators induce growth arrest and process extension in B12 oligodendrocyte-like cells and terminal differentiation of cultured oligodendrocytes. J. Neurosci. Res. 72, 425–435.10.1002/jnr.10596Suche in Google Scholar PubMed

Saluja, I. Granneman, J.G., and Skoff, R.P. (2001). PPAR δ agonists stimulate oligodendrocyte differentiation in tissue culture. Glia 33, 191–204.10.1002/1098-1136(200103)33:3<191::AID-GLIA1018>3.0.CO;2-MSuche in Google Scholar

Schoenfeld, R., Wong, A., Silva, J., Li, M., Itoh, A., Horiuchi, M., Itoh, T., Pleasure, D., and Cortopassi, G. (2010). Oligodendroglial differentiation induces mitochondrial genes and inhibition of mitochondrial function represses oligodendroglial differentiation. Mitochondrion 10, 143–150.10.1016/j.mito.2009.12.141Suche in Google Scholar

Walsh, C., Barrow, S., Voronina, S., Chvanov, M., Petersen, O.H., and Tepikin, A. (2009). Modulation of calcium signalling by mitochondria. Biochem. Biophys. Acta 1787, 1374–1382.10.1016/j.bbabio.2009.01.007Suche in Google Scholar

Willson, T.M., Brown, P.J., Sternbach, D.D., and Henke, B.R. (2000). The PPARs: from orphan receptors to drug discovery. J. Medicinal. Chem. 43, 527–550.10.1021/jm990554gSuche in Google Scholar

Wood, A., Wing, M.G., Benham, C.D., and Compston, D.A. (1993). Specific induction of intracellular calcium oscillations by complement membrane attack on oligodendroglia. J. Neurosci. 13, 3319–3332.10.1523/JNEUROSCI.13-08-03319.1993Suche in Google Scholar

Zawadzka, M. and Franklin R.J.M. (2007). Myelin regeneration in demyelinating disorders: new developments in biology and clinical pathology. Curr. Opin. Neurol. 20, 294–298.10.1097/WCO.0b013e32813aee7fSuche in Google Scholar

Zhang, F., Lavan, B.E., and Gregoire, F.M. (2007). Selective Modulators of PPAR-γ Activity: Molecular Aspects Related to Obesity and Side-Effects. PPAR Res. 2007, 32696.10.1155/2007/32696Suche in Google Scholar

Ziabreva, I., Campbell, G., Rist, J., Zambonin, J., Rorbach, J., Wydro, M.M., Lassmann, H., Franklin, R.J., and Mahad, D. (2010). Injury and differentiation following inhibition of mitochondrial respiratory chain complex IV in rat oligodendrocytes. Glia 58, 1827–1837.10.1002/glia.21052Suche in Google Scholar

Received: 2013-3-22
Accepted: 2013-6-13
Published Online: 2013-06-14
Published in Print: 2013-12-01

©2013 by Walter de Gruyter Berlin Boston

Heruntergeladen am 28.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2013-0152/html?lang=de
Button zum nach oben scrollen