Abstract
Low-density lipoprotein (LDL) particles are known as atherogenic agents in coronary artery diseases. They modify to other electronegative forms and may be the subject for improvement of inflammatory events in vessel subendothelial spaces. The circulating LDL value is associated with the plasma PCSK-9 level. They internalize into macrophages using the lysosomal receptor-mediated pathways. LDL uptake is related to the membrane scavenger receptors, modifications of lipid and protein components of LDL particles, vesicular maturation and lipid stores of cells. Furthermore, LDL vesicular trafficking is involved with the function of some proteins such as Rab and Lamp families. These proteins also help in the transportation of free cholesterol from lysosome into the cytosol. The aggregation of lipids in the cytosol is a starting point for the formation of foam cells so that they may participate in the primary core of atherosclerosis plaques. The effects of macrophage subclasses are different in the formation and remodeling of plaques. This review is focused on the cellular and molecular events involved in cholesterol homeostasis.
Author Statement
Research funding: The authors state no funding involved.
Conflict of interest: The authors declare no conflict of interest.
Informed consent: Informed consent is not applicable.
Ethical approval: The conducted research is not related to either human or animals use.
References
[1] Vance DE, Van den Bosch H. Cholesterol in the year 2000. Biochim Biophys Acta. 2000;1529:1–8.10.1016/S1388-1981(00)00133-5Search in Google Scholar PubMed
[2] Hanukoglu I. Steroidogenic enzymes: structure, function, and role in regulation of steroid hormone biosynthesis. J Steroid Biochem Mol Biol. 1992;43:779–804.10.1016/0960-0760(92)90307-5Search in Google Scholar PubMed
[3] Payne AH, Hales DB. Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr Rev. 2004;25:947–70.10.1210/er.2003-0030Search in Google Scholar PubMed
[4] Nwokoro NA, Wassif CA, Porter FD. Genetic disorders of cholesterol biosynthesis in mice and humans. Mol Genet Metab. 2001;74:105–19.10.1006/mgme.2001.3226Search in Google Scholar PubMed
[5] Fernández C, María del Val TL, Gómez-Coronado D, Lasunción MA. Cholesterol is essential for mitosis progression and its deficiency induces polyploid cell formation. Exp Cell Res. 2004;300:109–20.10.1016/j.yexcr.2004.06.029Search in Google Scholar PubMed
[6] Dietschy JM, Turley SD, Spady DK. Role of liver in the maintenance of cholesterol and low density lipoprotein homeostasis in different animal species, including humans. J Lipid Res. 1993;34:1637–59.10.1016/S0022-2275(20)35728-XSearch in Google Scholar PubMed
[7] Jasiñska M, Owczarek J, Orszulak-Michalak D. Statins: a new insight into their mechanisms of action and consequent pleiotropic effects. Pharmacol Rep. 2007;59:483.Search in Google Scholar PubMed
[8] Sakakura Y, Shimano H, Sone H, Takahashi A, Inoue K, Toyoshima H, et al. Sterol regulatory element-binding proteins induce an entire pathway of cholesterol synthesis. Biochem Biophys Res Commun. 2001;286:176–83.10.1006/bbrc.2001.5375Search in Google Scholar PubMed
[9] Gibbons GF, Wiggins D, Brown A-M, Hebbachi A-M. Synthesis and function of hepatic very-low-density lipoprotein. Biochem Soc Trans. 2004;32:59–64.10.1042/bst0320059Search in Google Scholar PubMed
[10] Grundy SM. Absorption and metabolism of dietary cholesterol. Annu Rev Nutr. 1983;3:71–96.10.1146/annurev.nu.03.070183.000443Search in Google Scholar PubMed
[11] Shelness GS, Sellers JA. Very-low-density lipoprotein assembly and secretion. Curr Opin Lipidol. 2001;12:151–7.10.1097/00041433-200104000-00008Search in Google Scholar PubMed
[12] Orekhov AN, Bobryshev YV, Sobenin IA, Melnichenko AA, Chistiakov DA. Modified low density lipoprotein and lipoprotein-containing circulating immune complexes as diagnostic and prognostic biomarkers of atherosclerosis and type 1 diabetes macrovascular disease. Int J Mol Sci. 2014;15:12807–41.10.3390/ijms150712807Search in Google Scholar PubMed
[13] Avogaro P, Bon GB, Cazzolato G. Presence of a modified low density lipoprotein in humans. Arterioscler Thromb Vasc Biol. 1988;8:79–87.10.1161/01.ATV.8.1.79Search in Google Scholar
[14] Orekhov AN, Sobenin IA. Modified lipoproteins as biomarkers of atherosclerosis. Front Biosci (Landmark Ed). 2018;1:1422–44.10.2741/4653Search in Google Scholar
[15] Tertov V, Sobenin I, Orekhov A, Jaakkola O, Solakivi T, Nikkari T. Characteristics of low density lipoprotein isolated from circulating immune complexes. Atherosclerosis. 1996;122:191–9.10.1016/0021-9150(95)05737-4Search in Google Scholar PubMed
[16] Najafi M, Roustazadeh A, Alipoor B. Ox-LDL particles: modified components, cellular uptake, biological roles and clinical assessments. Cardiovasc Hematol Disord Drug Targets. 2011;11:119–28.10.2174/187152911798346990Search in Google Scholar PubMed
[17] Berliner J, Territo M, Sevanian A, Ramin SK, Kim JA, Bamshad B, et al. Minimally modified low density lipoprotein stimulates monocyte endothelial interactions. J Clin Invest. 1990;85:1260.10.1172/JCI114562Search in Google Scholar PubMed PubMed Central
[18] Chowdhury SK, Sangle GV, Xie X, Stelmack GL, Halayko AJ, Shen GX. Effects of extensively oxidized low-density lipoprotein on mitochondrial function and reactive oxygen species in porcine aortic endothelial cells. Am J Physiol Endocrinol Metab. 2010;298:E89–98.10.1152/ajpendo.00433.2009Search in Google Scholar PubMed
[19] Moore KJ, Kunjathoor VV, Koehn SL, Manning JJ, Tseng AA, Silver JM, et al. Loss of receptor-mediated lipid uptake via scavenger receptor A or CD36 pathways does not ameliorate atherosclerosis in hyperlipidemic mice. J Clin Invest. 2005;115:2192.10.1172/JCI24061Search in Google Scholar PubMed PubMed Central
[20] Jordö ED, Wermeling F, Chen Y, Karlsson MC. Scavenger receptors as regulators of natural antibody responses and B cell activation in autoimmunity. Mol Immunol. 2011;48:1307–18.10.1016/j.molimm.2011.01.010Search in Google Scholar PubMed
[21] Superko HR. Small, dense low-density lipoprotein subclass pattern B: issues for the clinician. Curr Atheroscler Rep. 1999;1:50–7.10.1007/s11883-999-0050-6Search in Google Scholar PubMed
[22] Rashid S, Curtis DE, Garuti R, Anderson NN, Bashmakov Y, Ho Y, et al. Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9. Proc Natl Acad Sci USA. 2005;102:5374–9.10.1073/pnas.0501652102Search in Google Scholar PubMed PubMed Central
[23] Giunzioni I, Tavori H. New developments in atherosclerosis: clinical potential of PCSK9 inhibition. Vasc Health Risk Manag. 2015;11:493.10.2147/VHRM.S74692Search in Google Scholar PubMed PubMed Central
[24] Linder MD, Uronen R-L, Hölttä-Vuori M, van der Sluijs P, Peränen J, Ikonen E. Rab8-dependent recycling promotes endosomal cholesterol removal in normal and sphingolipidosis cells. Mol Biol Cell. 2007;18:47–56.10.1091/mbc.e06-07-0575Search in Google Scholar PubMed PubMed Central
[25] Lebrand C, Corti M, Goodson H, Cosson P, Cavalli V, Mayran N, et al. Late endosome motility depends on lipids via the small GTPase Rab7. EMBO J. 2002;21:1289–300.10.1093/emboj/21.6.1289Search in Google Scholar PubMed PubMed Central
[26] Ganley IG, Pfeffer SR. Cholesterol accumulation sequesters Rab9 and disrupts late endosome function in NPC1-deficient cells. J Biol Chem. 2006;281:17890–9.10.1074/jbc.M601679200Search in Google Scholar PubMed PubMed Central
[27] Eskelinen EL, Schmidt CK, Neu S, Willenborg M, Fuertes G, Salvador N, et al. Disturbed cholesterol traffic but normal proteolytic function in LAMP-1/LAMP-2 double-deficient fibroblasts. Mol Biol Cell. 2004;15:3132–45.10.1091/mbc.e04-02-0103Search in Google Scholar PubMed PubMed Central
[28] Brown MS, Goldstein JL. Receptor-mediated control of cholesterol metabolism. Science. 1976;191:150–4.10.1126/science.174194Search in Google Scholar PubMed
[29] Goedeke L, Fernández-Hernando C. Regulation of cholesterol homeostasis. Cell Mol Life Sci. 2012;69:915–30.10.1007/s00018-011-0857-5Search in Google Scholar PubMed
[30] Schulz C, Massberg S. Atherosclerosis – multiple pathways to lesional macrophages. Sci Transl Med. 2014;6:239ps2.10.1126/scitranslmed.3008922Search in Google Scholar PubMed
[31] Boyle J. Lehninger principles of biochemistry: Nelson, D., and Cox, M. Biochem Mol Biol Educ. 2005;33:74–75.10.1002/bmb.2005.494033010419Search in Google Scholar
[32] Kumar V, Butcher SJ, Öörni K, Engelhardt P, Heikkonen J, Kaski K, et al. Three-dimensional cryoEM reconstruction of native LDL particles to 16Å resolution at physiological body temperature. PLoS One. 2011;6:e18841.10.1371/journal.pone.0018841Search in Google Scholar PubMed
[33] Ji Y, Jian B, Wang N, Sun Y, de la Llera Moya M, Phillips MC, et al. Scavenger receptor BI promotes high density lipoprotein-mediated cellular cholesterol efflux. J Biol Chem. 1997;272:20982–5.10.1074/jbc.272.34.20982Search in Google Scholar PubMed
[34] Linsel-Nitschke P, Tall AR. HDL as a target in the treatment of atherosclerotic cardiovascular disease. Nat Rev Drug Discovery. 2005;4:193–205.10.1038/nrd1658Search in Google Scholar
[35] Goldstein JL, Brown MS. The LDL receptor defect in familial hypercholesterolemia: implications for pathogenesis and therapy. Med Clin North Am. 1982;66:335–62.10.1016/S0025-7125(16)31424-9Search in Google Scholar PubMed
[36] Defesche JC, Gidding SS, Harada-Shiba M, Hegele RA, Santos RD, Wierzbicki AS. Familial hypercholesterolaemia. Nat Rev Disease Primers. 2017;3:17093.10.1038/nrdp.2017.93Search in Google Scholar PubMed
[37] Galle J, Schneider R, Heinloth A, Wanner C, Galle PR, Conzelmann E, et al. Lp (a) and LDL induce apoptosis in human endothelial cells and in rabbit aorta: role of oxidative stress. Kidney Int. 1999;55:1450–61.10.1046/j.1523-1755.1999.00351.xSearch in Google Scholar PubMed
[38] Galle J, Hansen-Hagge T, Wanner C, Seibold S. Impact of oxidized low density lipoprotein on vascular cells. Atherosclerosis. 2006;185:219–26.10.1016/j.atherosclerosis.2005.10.005Search in Google Scholar PubMed
[39] Barlic J, Zhang Y, Foley JF, Murphy PM. Oxidized lipid-driven chemokine receptor switch, CCR2 to CX3CR1, mediates adhesion of human macrophages to coronary artery smooth muscle cells through a peroxisome proliferator-activated receptor γ–dependent pathway. Circulation. 2006;114:807–19.10.1161/CIRCULATIONAHA.105.602359Search in Google Scholar PubMed
[40] Chávez-Sánchez L, Chávez-Rueda K, Legorreta-Haquet MV, Zenteno E, Ledesma-Soto Y, Montoya-Díaz E, et al. The activation of CD14, TLR4, and TLR2 by mmLDL induces IL-1β, IL-6, and IL-10 secretion in human monocytes and macrophages. Lipids Health Dis. 2010;9:117.10.1186/1476-511X-9-117Search in Google Scholar PubMed PubMed Central
[41] Conti P, Shaik-Dasthagirisaeb Y. Atherosclerosis: a chronic inflammatory disease mediated by mast cells. Cent Eur J Immunol. 2015;40:380.10.5114/ceji.2015.54603Search in Google Scholar PubMed PubMed Central
[42] Tsimikas S, Brilakis ES, Miller ER, McConnell JP, Lennon RJ, Kornman KS, et al. Oxidized phospholipids, Lp (a) lipoprotein, and coronary artery disease. N Engl J Med. 2005;353:46–57.10.1056/NEJMoa043175Search in Google Scholar PubMed
[43] Tsimikas S, Witztum JL. Measuring circulating oxidized low-density lipoprotein to evaluate coronary risk. Circulation. 2001;103:1930–2.10.1161/01.CIR.103.15.1930Search in Google Scholar PubMed
[44] Seo H, Oh H, Park H, Park M, Jang Y, Lee M. Contribution of dietary intakes of antioxidants to homocysteine-induced low density lipoprotein (LDL) oxidation in atherosclerotic patients. Yonsei Med J. 2010;51:526–33.10.3349/ymj.2010.51.4.526Search in Google Scholar PubMed PubMed Central
[45] Hirayama S, Miida T. Small dense LDL: an emerging risk factor for cardiovascular disease. Clin Chim Acta. 2012;414:215–24.10.1016/j.cca.2012.09.010Search in Google Scholar PubMed
[46] Shen H, Xu L, Lu J, Hao T, Ma C, Yang H, et al. Correlation between small dense low-density lipoprotein cholesterol and carotid artery intima-media thickness in a healthy Chinese population. Lipids Health Dis. 2015;14:137.10.1186/s12944-015-0143-xSearch in Google Scholar PubMed PubMed Central
[47] Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation. 1998;97:1837–47.10.1161/01.CIR.97.18.1837Search in Google Scholar PubMed
[48] Nunnelee JD. Review of an article: nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease and death in men and women. Nordestgaard B, Benn M, Schnohr P, Tybjaerg-Hansen A. J Am Med Assoc. 2007;298:299–308. J Vasc Nurs 2008;26:27.10.1016/j.jvn.2007.11.001Search in Google Scholar PubMed
[49] Weis WI, Taylor ME, Drickamer K. The C‐type lectin superfamily in the immune system. Immunol Rev. 1998;163:19–34.10.1111/j.1600-065X.1998.tb01185.xSearch in Google Scholar PubMed
[50] Schwenke DC, Carew TE. Initiation of atherosclerotic lesions in cholesterol-fed rabbits. II. Selective retention of LDL vs. selective increases in LDL permeability in susceptible sites of arteries. Arterioscler Thromb Vasc Biol. 1989;9:908–18.10.1161/01.ATV.9.6.908Search in Google Scholar PubMed
[51] Südhof TC, Goldstein JL, Brown MS, Russell DW. The LDL receptor gene: a mosaic of exons shared with different proteins. Science. 1985;228:815.10.1126/science.2988123Search in Google Scholar PubMed PubMed Central
[52] Francke U, Brown MS, Goldstein JL. Assignment of the human gene for the low density lipoprotein receptor to chromosome 19: synteny of a receptor, a ligand, and a genetic disease. Proc Natl Acad Sci USA. 1984;81:2826–30.10.1073/pnas.81.9.2826Search in Google Scholar
[53] Lindgren V, Luskey KL, Russell DW, Francke U. Human genes involved in cholesterol metabolism: chromosomal mapping of the loci for the low density lipoprotein receptor and 3-hydroxy-3-methylglutaryl-coenzyme A reductase with cDNA probes. Proc Natl Acad Sci USA. 1985;82:8567–71.10.1073/pnas.82.24.8567Search in Google Scholar
[54] Zhang DW, Lagace TA, Garuti R, Zhao Z, McDonald M, Horton JD, et al. Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat A of low density lipoprotein receptor decreases receptor recycling and increases degradation. J Biol Chem. 2007;282:18602–12.10.1074/jbc.M702027200Search in Google Scholar PubMed
[55] Espenshade PJ, Hughes AL. Regulation of sterol synthesis in eukaryotes. Annu Rev Genet. 2007;41:401–27.10.1146/annurev.genet.41.110306.130315Search in Google Scholar PubMed
[56] Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell. 1997;89:331–40.10.1016/S0092-8674(00)80213-5Search in Google Scholar PubMed
[57] Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature. 1990;343:425.10.1038/343425a0Search in Google Scholar PubMed
[58] Benjannet S, Rhainds D, Essalmani R, Mayne J, Wickham L, Jin W, et al. NARC-1/PCSK9 and its natural mutants zymogen cleavage and effects on the low density lipoprotein (LDL) receptor and LDL cholesterol. J Biol Chem. 2004;279:48865–75.10.1074/jbc.M409699200Search in Google Scholar PubMed
[59] Zhang DW, Garuti R, Tang WJ, Cohen JC, Hobbs HH. Structural requirements for PCSK9-mediated degradation of the low-density lipoprotein receptor. Proc Natl Acad Sci USA. 2008;105:13045–50.10.1073/pnas.0806312105Search in Google Scholar PubMed PubMed Central
[60] Pollack A. New drugs for lipids set off race. New York Times. 2012:B1.Search in Google Scholar
[61] Abifadel M, Varret M, Rabès JP, Allard D, Ouguerram K, Devillers M, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34:154–6.10.1038/ng1161Search in Google Scholar PubMed
[62] Dadu RT, Ballantyne CM. Lipid lowering with PCSK9 inhibitors. Nat Rev Cardiol. 2014;11:563–75.10.1038/nrcardio.2014.84Search in Google Scholar PubMed
[63] Weinreich M, Frishman WH. Antihyperlipidemic therapies targeting PCSK9. Cardiol Rev. 2014;22:140–6.10.1097/CRD.0000000000000014Search in Google Scholar PubMed
[64] Kazi DS, Moran AE, Coxson PG, Penko J, Ollendorf DA, Pearson SD, et al. Cost-effectiveness of PCSK9 inhibitor therapy in patients with heterozygous familial hypercholesterolemia or atherosclerotic cardiovascular disease. J Am Med Assoc. 2016;316:743–53.10.1001/jama.2016.11004Search in Google Scholar PubMed
[65] Everett BM, Smith RJ, Hiatt WR. Reducing LDL with PCSK9 inhibitors – the clinical benefit of lipid drugs. N Engl J Med. 2015;373:1588–91.10.1056/NEJMp1508120Search in Google Scholar PubMed
[66] McKenney JM. Understanding PCSK9 and anti-PCSK9 therapies. J Clin Lipidol. 2015;9:170–86.10.1016/j.jacl.2015.01.001Search in Google Scholar PubMed
[67] Schulz R, Schlüter KD, Laufs U. Molecular and cellular function of the proprotein convertase subtilisin/kexin type 9 (PCSK9). Basic Res Cardiol. 2015;110:4.10.1007/s00395-015-0463-zSearch in Google Scholar PubMed PubMed Central
[68] Mohammadi A, Shabani M, Naseri F, Hosseni B, Soltanmohammadi E, Piran S, et al. Circulating PCSK9 affects serum LDL and cholesterol levels more than SREBP-2 expression. Adv Clin Exp Med. 2017;26:655–9.10.17219/acem/62836Search in Google Scholar PubMed
[69] Softanmohammadi E, Piran S, Mohammadi A, Hosseni B, Naseri F, Shabani M, et al. Serum sdLDL-C and Cellular SREBP2-Dependent Cholesterol Levels; Is there a Challenge on Targeting PCSK9? J Med Biochem. 2016;35:410–5.10.1515/jomb-2016-0019Search in Google Scholar PubMed PubMed Central
[70] Hosseni B, Shabani M, Mohammadi A, Naseri F, Soltanmohammadi E, Piran S, et al. Plasma PCSK9 level affects passively LAMP-2 expression; an evidence of transcription network. Gene Rep. 2016;4:258–63.10.1016/j.genrep.2016.07.005Search in Google Scholar
[71] Paschou SA, Anagnostis P, Vryonidou A, Goulis DG. Editorial: Diabetes and Atherosclerosis: Old Players in a New Field, Osteoporosis. Curr Vasc Pharmacol. 2017;16. DOI: 10.2174/1570161116666171205104851.Search in Google Scholar PubMed
[72] Lonardo A, Nascimbeni F, Mantovani A, Targher G. Hypertension, diabetes, atherosclerosis and NASH: Cause or consequence? J Hepatol. 2018;68:335–52.10.1016/j.jhep.2017.09.021Search in Google Scholar PubMed
[73] de Ronde MW, Kok MG, Moerland PD, Van den Bossche J, Neele AE, Halliani A, et al. High miR-124-3p expression identifies smoking individuals susceptible to atherosclerosis. Atherosclerosis. 2017;263:377–84.10.1016/j.atherosclerosis.2017.03.045Search in Google Scholar PubMed
[74] Li Y, Duan Z, Gao D, Huang S, Yuan H, Niu X. The new role of LOX-1 in hypertension induced neuronal apoptosis. Biochem Biophys Res Commun. 2012;425:735–40.10.1016/j.bbrc.2012.07.143Search in Google Scholar PubMed
[75] Kelly KJ, Wu P, Patterson CE, Temm C, Dominguez JH. LOX-1 and inflammation: a new mechanism for renal injury in obesity and diabetes. Am J Physiol Renal Physiol. 2008;294:F1136–45.10.1152/ajprenal.00396.2007Search in Google Scholar PubMed
[76] Chen M, Masaki T, Sawamura T. LOX-1, the receptor for oxidized low-density lipoprotein identified from endothelial cells: implications in endothelial dysfunction and atherosclerosis. Pharmacol Ther. 2002;95:89–100.10.1016/S0163-7258(02)00236-XSearch in Google Scholar PubMed
[77] Sun JJ, XW Y, Liu HH, Du WX, Shi LY, Huang YB, et al. Rapamycin inhibits ox-LDL-induced inflammation in human endothelial cells in vitro by inhibiting the mTORC2/PKC/c-Fos pathway. Acta Pharmacol Sin. 2018;39:336–44.10.1038/aps.2017.102Search in Google Scholar PubMed PubMed Central
[78] Matsumura T, Sakai M, Kobori S, Biwa T, Takemura T, Matsuda M, et al. Two intracellular signaling pathways for activation of protein kinase C are involved in oxidized low-density lipoprotein-induced macrophage growth. Arterioscler Thromb Vasc Biol. 1997;17:3013–20.10.1161/01.ATV.17.11.3013Search in Google Scholar PubMed
[79] Li YB, Zhang QH, Chen Z, He ZJ, Yi GH. Oxidized low-density lipoprotein attenuated desmoglein 1 and desmocollin 2 expression via LOX-1/Ca(2+)/PKC-beta signal in human umbilical vein endothelial cells. Biochem Biophys Res Commun. 2015;468:380–6.10.1016/j.bbrc.2015.10.079Search in Google Scholar PubMed
[80] Ruegg JC. Smooth muscle: PKC-induced Ca2+ sensitisation by myosin phosphatase inhibition. J Physiol. 1999;520 Pt 1:3.10.1111/j.1469-7793.1999.t01-1-00003.xSearch in Google Scholar PubMed PubMed Central
[81] Aslam M, Hartel FV, Arshad M, Gunduz D, Abdallah Y, Sauer H, et al. cAMP/PKA antagonizes thrombin-induced inactivation of endothelial myosin light chain phosphatase: role of CPI-17. Cardiovasc Res. 2010;87:375–84.10.1093/cvr/cvq065Search in Google Scholar PubMed
[82] Kijani S, Vázquez AM, Levin M, Borén J, Fogelstrand P. Intimal hyperplasia induced by vascular intervention causes lipoprotein retention and accelerated atherosclerosis. Physiol Rep. 2017 7;5(14):e13334–e13334. DOI: 10.14814/phy2.13334.Search in Google Scholar PubMed PubMed Central
[83] Neufeld EB, Zadrozny LM, Phillips D, Aponte A, Yu ZX, Balaban RS. Decorin and biglycan retain LDL in disease-prone valvular and aortic subendothelial intimal matrix. Atherosclerosis. 2014;233:113–21.10.1016/j.atherosclerosis.2013.12.038Search in Google Scholar PubMed
[84] Tannock LR. Proteoglycan-LDL interactions: a novel therapeutic target? Atherosclerosis. 2014;233:232–3.10.1016/j.atherosclerosis.2013.12.049Search in Google Scholar PubMed
[85] Borén J, Olin K, Lee I, Chait A, Wight TN, Innerarity TL. Identification of the principal proteoglycan-binding site in LDL. A single-point mutation in apo-B100 severely affects proteoglycan interaction without affecting LDL receptor binding. J Clin Invest. 1998;101:2658–64.10.1172/JCI2265Search in Google Scholar PubMed
[86] Zeng X, Chen J, Miller YI, Javaherian K, Moulton KS. Endostatin binds biglycan and LDL and interferes with LDL retention to the subendothelial matrix during atherosclerosis. J Lipid Res. 2005;46:1849–59.10.1194/jlr.M500241-JLR200Search in Google Scholar PubMed
[87] Stein O, Ben-Naim M, Dabach Y, Hollander G, Stein Y. Murine macrophages secrete factors that enhance uptake of non-lipoprotein [3H]cholesteryl ester by aortic smooth muscle cells. Biochim Biophys Acta. 1994;1212:305–10.10.1016/0005-2760(94)90204-6Search in Google Scholar PubMed
[88] Loeffler B, Heeren J, Blaeser M, Radner H, Kayser D, Aydin B, et al. Lipoprotein lipase-facilitated uptake of LDL is mediated by the LDL receptor. J Lipid Res. 2007;48:288–98.10.1194/jlr.M600292-JLR200Search in Google Scholar PubMed
[89] Guardiola M, Echeverria P, Gonzalez M, Vallve JC, Puig J, Clotet B, et al. Polymorphisms in LPL, CETP, and HL protect HIV-infected patients from atherogenic dyslipidemia in an allele-dose-dependent manner. AIDS Res Hum Retroviruses. 2015;31:882–8.10.1089/aid.2015.0061Search in Google Scholar PubMed
[90] Sevanian A, Asatryan L, Ziouzenkova O. Low density lipoprotein (LDL) modification: basic concepts and relationship to atherosclerosis. Blood Purif. 1999;17:66–78.10.1159/000014378Search in Google Scholar PubMed
[91] Silva GC, Abbas M, Khemais-Benkhiat S, Burban M, Ribeiro TP, Toti F, et al. Replicative senescence promotes prothrombotic responses in endothelial cells: Role of NADPH oxidase- and cyclooxygenase-derived oxidative stress. Exp Gerontol. 2017;93:7–15.10.1016/j.exger.2017.04.006Search in Google Scholar PubMed
[92] Cuaz-Perolin C, Furman C, Larigauderie G, Legedz L, Lasselin C, Copin C, et al. REDD2 gene is upregulated by modified LDL or hypoxia and mediates human macrophage cell death. Arterioscler Thromb Vasc Biol. 2004;24:1830–5.10.1161/01.ATV.0000142366.69080.c3Search in Google Scholar PubMed
[93] Hamilton JA, Myers D, Jessup W, Cochrane F, Byrne R, Whitty G, et al. Oxidized LDL can induce macrophage survival, DNA synthesis, and enhanced proliferative response to CSF-1 and GM-CSF. Arterioscler Thromb Vasc Biol. 1999;19:98–105.10.1161/01.ATV.19.1.98Search in Google Scholar PubMed
[94] Buton X, Mamdouh Z, Ghosh R, Du H, Kuriakose G, Beatini N, et al. Unique cellular events occurring during the initial interaction of macrophages with matrix-retained or methylated aggregated low density lipoprotein (LDL). Prolonged cell-surface contact during which ldl-cholesteryl ester hydrolysis exceeds ldl protein degradation. J Biol Chem. 1999;274:32112–21.10.1074/jbc.274.45.32112Search in Google Scholar PubMed
[95] Bose C, Shah SV, Karaduta OK, Kaushal GP. Carbamylated Low-Density Lipoprotein (cLDL)-Mediated Induction of Autophagy and Its Role in Endothelial Cell Injury. PLoS One. 2016;11:e0165576.10.1371/journal.pone.0165576Search in Google Scholar PubMed
[96] Lougheed M, Moore ED, Scriven DR, Steinbrecher UP. Uptake of oxidized LDL by macrophages differs from that of acetyl LDL and leads to expansion of an acidic endolysosomal compartment. Arterioscler Thromb Vasc Biol. 1999;19:1881–90.10.1161/01.ATV.19.8.1881Search in Google Scholar PubMed
[97] Itabe H, Obama T, Kato R. The dynamics of oxidized LDL during atherogenesis. J Lipid. 2011;2011:1–9. DOI: 10.1155/2011/418313.Search in Google Scholar
[98] Morel DW, DiCorleto PE, Chisolm GM. Endothelial and smooth muscle cells alter low density lipoprotein in vitro by free radical oxidation. Arterioscler Thromb Vasc Biol. 1984;4:357–64.10.1161/01.ATV.4.4.357Search in Google Scholar
[99] Wen Y, Leake DS. Low density lipoprotein undergoes oxidation within lysosomes in cells. Circ Res. 2007;100:1337–43.10.1161/CIRCRESAHA.107.151704Search in Google Scholar PubMed
[100] O’leary V, Darley-Usmar V, Russell L, Stone D. Pro-oxidant effects of lipoxygenase-derived peroxides on the copper-initiated oxidation of low-density lipoprotein. Biochem J. 1992;282:631–4.10.1042/bj2820631Search in Google Scholar PubMed
[101] Sparrow C, Parthasarathy S, Steinberg D. Enzymatic modification of low density lipoprotein by purified lipoxygenase plus phospholipase A2 mimics cell-mediated oxidative modification. J Lipid Res. 1988;29:745–53.10.1016/S0022-2275(20)38493-5Search in Google Scholar PubMed
[102] Chang M-K, Bergmark C, Laurila A, Hörkkö S, Han KH, Friedman P, et al. Monoclonal antibodies against oxidized low-density lipoprotein bind to apoptotic cells and inhibit their phagocytosis by elicited macrophages: evidence that oxidation-specific epitopes mediate macrophage recognition. Proc Natl Acad Sci USA. 1999;96:6353–8.10.1073/pnas.96.11.6353Search in Google Scholar PubMed PubMed Central
[103] Andican G, Seven A, Uncu M, Cantasdemir M, Numan F, Burcak G. Oxidized LDL and anti-oxLDL antibody levels in peripheral atherosclerotic disease. Scand J Clin Lab Invest. 2008;68:473–8.10.1080/00365510701842996Search in Google Scholar PubMed
[104] Chavakis E, Dernbach E, Hermann C, Mondorf UF, Zeiher AM, Dimmeler S. Oxidized LDL inhibits vascular endothelial growth factor-induced endothelial cell migration by an inhibitory effect on the Akt/endothelial nitric oxide synthase pathway. Circulation. 2001;103:2102–7.10.1161/01.CIR.103.16.2102Search in Google Scholar PubMed
[105] Qin B, Xiao B, Liang D, Xia J, Li Y, Yang H. MicroRNAs expression in ox-LDL treated HUVECs: MiR-365 modulates apoptosis and Bcl-2 expression. Biochem Biophys Res Commun. 2011;410:127–33.10.1016/j.bbrc.2011.05.118Search in Google Scholar PubMed
[106] Zhang E, Wu Y. MicroRNAs: important modulators of oxLDL-mediated signaling in atherosclerosis. J Atheroscler Thromb. 2013;20:215–27.10.5551/jat.15180Search in Google Scholar PubMed
[107] Wolff SP, Dean R. Glucose autoxidation and protein modification. The potential role of ‘autoxidative glycosylation’in diabetes. Biochem J. 1987;245:243–50.10.1042/bj2450243Search in Google Scholar PubMed
[108] Schleicher E, Deufel T, Wieland O. Non-enzymatic glycosylation of human serum lipoproteins Elevated ϵ-lysine glycosylated low density lipoprotein in diabetic patients. Febs Lett. 1981;129:1–4.10.1016/0014-5793(81)80741-7Search in Google Scholar PubMed
[109] Bucala R, Mitchell R, Arnold K, Innerarity T, Vlassara H, Cerami A. Identification of the major site of apolipoprotein B modification by advanced glycosylation end products blocking uptake by the low density lipoprotein receptor. J Biol Chem. 1995;270:10828–32.10.1074/jbc.270.18.10828Search in Google Scholar PubMed
[110] Schleicher E, Friess U. Oxidative stress, AGE, and atherosclerosis. Kidney Int Suppl. 2007;72:S17–S26.10.1038/sj.ki.5002382Search in Google Scholar
[111] Suzuki H, Kurihara Y, Takeya M, Jishage K, Ueda O, Sakaguchi H, et al. A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature. 1997;386:292–96.10.1038/386292a0Search in Google Scholar PubMed
[112] Sasaki J, Cottam GL. Glycosylation of LDL decreases its ability to interact with high-affinity receptors of human fibroblasts in vitro and decreases its clearance from rabbit plasma in vivo. Biochim Biophys Acta. 1982;713:199–207.10.1016/0005-2760(82)90237-5Search in Google Scholar PubMed
[113] Sobenin IA, Tertov VV, Orekhov AN. Atherogenic modified LDL in diabetes. Diabetes. 1996;45:S35–9.10.2337/diab.45.3.S35Search in Google Scholar PubMed
[114] Ram CVS. NCD Update: Connection between Chronic Kidney Disease and Cardiovascular Disease. http://www.apiindia.org/pdf/medicine_update_2017/mu_141.pdf.Search in Google Scholar
[115] Velasquez MT, Ramezani A, Raj DS. Urea and protein carbamylation in ESRD: surrogate markers or partners in crime? Kidney Int. 2015;87:1092.10.1038/ki.2015.78Search in Google Scholar PubMed
[116] Stehbens WE. The oxidative stress hypothesis of atherosclerosis: cause or product? Med Hypotheses. 1999;53:507–15.10.1054/mehy.1999.0801Search in Google Scholar PubMed
[117] Seo JW, Yang EJ, Yoo KH, Choi IH. Macrophage differentiation from monocytes is influenced by the lipid oxidation degree of low density lipoprotein. Mediators Inflamm. 2015;2015:10.10.1155/2015/235797Search in Google Scholar
[118] Witztum JL. The oxidation hypothesis of atherosclerosis. Lancet (London, England). 1994;344:793–5.10.1016/S0140-6736(94)92346-9Search in Google Scholar PubMed
[119] Witztum JL, Steinberg D. The oxidative modification hypothesis of atherosclerosis: does it hold for humans? Trends Cardiovasc Med. 2001;11:93–102.10.1016/S1050-1738(01)00111-6Search in Google Scholar PubMed
[120] Smith AR, Hagen TM. Vascular endothelial dysfunction in aging: loss of Akt-dependent endothelial nitric oxide synthase phosphorylation and partial restoration by (R)-alpha-lipoic acid. Biochem Soc Trans. 2003;31:1447–9.10.1042/bst0311447Search in Google Scholar PubMed
[121] McHale JF, Harari OA, Marshall D, Haskard DO. TNF-α and IL-1 sequentially induce endothelial ICAM-1 and VCAM-1 expression in MRL/lpr lupus-prone mice. J Immunol. 1999;163:3993–4000.10.4049/jimmunol.163.7.3993Search in Google Scholar PubMed
[122] Bivalacqua T, Champion H, Mehta Y, Abdel-Mageed AB, Sikka SC, Ignarro LI, et al. Adenoviral gene transfer of endothelial nitric oxide synthase (eNOS) to the penis improves age-related erectile dysfunction in the rat. Int J Impot Res. 2000;12:S8.10.1038/sj.ijir.3900556Search in Google Scholar PubMed
[123] Spiecker M, Peng HB, Liao JK. Inhibition of endothelial vascular cell adhesion molecule-1 expression by nitric oxide involves the induction and nuclear translocation of IkappaBalpha. J Biol Chem. 1997;272:30969–74.10.1074/jbc.272.49.30969Search in Google Scholar PubMed
[124] Heery JM, Kozak M, Stafforini DM, Jones DA, Zimmerman GA, Mcintyre TM, et al. Oxidatively modified LDL contains phospholipids with platelet-activating factor-like activity and stimulates the growth of smooth muscle cells. J Clin Invest. 1995;96:2322.10.1172/JCI118288Search in Google Scholar PubMed PubMed Central
[125] Quinn MT, Parthasarathy S, Fong LG, Steinberg D. Oxidatively modified low density lipoproteins: a potential role in recruitment and retention of monocyte/macrophages during atherogenesis. Proc Natl Acad Sci USA. 1987;84:2995–8.10.1073/pnas.84.9.2995Search in Google Scholar
[126] Rousselle A, Qadri F, Leukel L, Yilmaz R, Fontaine JF, Sihn G, et al. CXCL5 limits macrophage foam cell formation in atherosclerosis. J Clin Invest. 2013;123:1343.10.1172/JCI66580Search in Google Scholar PubMed
[127] Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2010;11:889–96.10.1038/ni.1937Search in Google Scholar PubMed
[128] Nakagawa T, Nozaki S, Nishida M, Yakub JM, Tomiyama Y, Nakata A, et al. Oxidized LDL increases and interferon-gamma decreases expression of CD36 in human monocyte-derived macrophages. Arterioscler Thromb Vasc Biol. 1998;18:1350–7.10.1161/01.ATV.18.8.1350Search in Google Scholar PubMed
[129] Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23:549–55.10.1016/S1471-4906(02)02302-5Search in Google Scholar PubMed
[130] Mantovani A, Sica A, Allavena P, Garlanda C, Locati M. Tumor-associated macrophages and the related myeloid-derived suppressor cells as a paradigm of the diversity of macrophage activation. Hum Immunol. 2009;70:325–30.10.1016/j.humimm.2009.02.008Search in Google Scholar PubMed
[131] Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012;122:787.10.1172/JCI59643Search in Google Scholar PubMed PubMed Central
[132] Muraille E, Leo O, Moser M. TH1/TH2 paradigm extended: macrophage polarization as an unappreciated pathogen-driven escape mechanism? Front Immunol. 2014;5:603.10.3389/fimmu.2014.00603Search in Google Scholar PubMed PubMed Central
[133] Mann CJ, Perdiguero E, Kharraz Y, Aguilar S, Pessina P, Serrano AL, et al. Aberrant repair and fibrosis development in skeletal muscle. Skelet Muscle. 2011;1:21.10.1186/2044-5040-1-21Search in Google Scholar PubMed PubMed Central
[134] Benoit M, Desnues B, Mege JL. Macrophage polarization in bacterial infections. J Immunol. 2008;181:3733–9.10.4049/jimmunol.181.6.3733Search in Google Scholar PubMed
[135] Sironi M, Martinez FO, D’Ambrosio D, Gattorno M, Polentarutti N, Locati M, et al. Differential regulation of chemokine production by Fcγ receptor engagement in human monocytes: association of CCL1 with a distinct form of M2 monocyte activation (M2b, Type 2). J Leukoc Biol Suppl. 2006;80:342–9.10.1189/jlb.1005586Search in Google Scholar PubMed
[136] Cao Q, Wang Y, Zheng D, Sun Y, Wang Y, Lee VW, et al. IL-10/TGF-β–modified macrophages induce regulatory T cells and protect against adriamycin nephrosis. Clin J Am Soc Nephrol. 2010;21:933–42.10.1681/ASN.2009060592Search in Google Scholar PubMed PubMed Central
[137] Ferrante CJ, Pinhal-Enfield G, Elson G, Cronstein BN, Hasko G, Outram S, et al. The adenosine-dependent angiogenic switch of macrophages to an M2-like phenotype is independent of interleukin-4 receptor alpha (IL-4Rα) signaling. Inflammation. 2013;36:921–31.10.1007/s10753-013-9621-3Search in Google Scholar PubMed PubMed Central
[138] Nakamuta M, Fujino T, Yada R, Yada M, Yasutake K, Yoshimoto T, et al. Impact of cholesterol metabolism and the LXRα-SREBP-1c pathway on nonalcoholic fatty liver disease. Int J Mol Med. 2009;23:603–8.10.3892/ijmm_00000170Search in Google Scholar PubMed
[139] Kunjathoor VV, Febbraio M, Podrez EA, Moore KJ, Andersson L, Koehn S, et al. Scavenger receptors class AI/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J Biol Chem. 2002;277:49982–8.10.1074/jbc.M209649200Search in Google Scholar PubMed
[140] Calderwood SK, Theriault J, Gray PJ, Gong J. Cell surface receptors for molecular chaperones. Methods. 2007;43:199–206.10.1016/j.ymeth.2007.06.008Search in Google Scholar PubMed
[141] Syväranta S, Alanne-Kinnunen M, Öörni K, Oksjoki R, Kupari M, Kovanen PT, et al. Potential pathological roles for oxidized low-density lipoprotein and scavenger receptors SR-AI, CD36, and LOX-1 in aortic valve stenosis. Atherosclerosis. 2014;235:398–407.10.1016/j.atherosclerosis.2014.05.933Search in Google Scholar PubMed
[142] Suits AG, Chait A, Aviram M, Heinecke JW. Phagocytosis of aggregated lipoprotein by macrophages: low density lipoprotein receptor-dependent foam-cell formation. Proc Natl Acad Sci USA. 1989;86:2713–7.10.1073/pnas.86.8.2713Search in Google Scholar PubMed PubMed Central
[143] Kruth HS. Receptor-independent fluid-phase pinocytosis mechanisms for induction of foam cell formation with native LDL particles. Curr Opin Lipidol. 2011;22:386.10.1097/MOL.0b013e32834adadbSearch in Google Scholar PubMed PubMed Central
[144] Naseri F, Mohammadi A, Hosseni B, Shabani M, Piran S, Soltanmohammadi E, et al. PCSK9-related LDL-C value is correlated to Rab5 isoform expression level. Gene Rep. 2017;6:128–31.10.1016/j.genrep.2016.12.012Search in Google Scholar
[145] Racoosin EL, Swanson JA. M-CSF-induced macropinocytosis increases solute endocytosis but not receptor-mediated endocytosis in mouse macrophages. J Cell Sci. 1992;102:867–80.10.1242/jcs.102.4.867Search in Google Scholar PubMed
[146] Chavrier P, Gorvel J-P, Stelzer E, Simons K, Gruenberg J, Zerial M. Hypervariable C-termmal domain of rab proteins acts as a targeting signal. Nature. 1991;353:769–72.10.1038/353769a0Search in Google Scholar
[147] Gorvel JP, Chavrier P, Zerial M, Gruenberg J. rab5 controls early endosome fusion in vitro. Cell. 1991;64:915–25.10.1016/0092-8674(91)90316-QSearch in Google Scholar PubMed
[148] Hoffman EP, Barr ML, Giovanni MA, Murray MF. Lysosomal acid lipase deficiencyGene. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 2016;1993–2018.Search in Google Scholar
[149] Teimouri M, Shabani P, Zali F, Najafi M, Shateri H, Asadnia M, et al. Circulating Levels of LAMP2 in Coronary Artery Disease: Association with Serum Lipid Profile. Horm Metab Res. 2017;49:109–14.10.1055/s-0042-119649Search in Google Scholar PubMed
[150] Sakashita N, Lei X, Kamikawa M, Nishitsuji K. Role of ACAT1-positive late endosomes in macrophages: cholesterol metabolism and therapeutic applications for Niemann-Pick disease type C. J Med Invest. 2014;61:270–7.10.2152/jmi.61.270Search in Google Scholar PubMed
[151] Lange Y, Ye J, Rigney M, Steck TL. Regulation of endoplasmic reticulum cholesterol by plasma membrane cholesterol. J Lipid Res. 1999;40:2264–70.10.1016/S0022-2275(20)32101-5Search in Google Scholar PubMed
[152] Underwood KW, Jacobs NL, Howley A, Liscum L. Evidence for a cholesterol transport pathway from lysosomes to endoplasmic reticulum that is independent of the plasma membrane. J Biol Chem. 1998;273:4266–74.10.1074/jbc.273.7.4266Search in Google Scholar PubMed
[153] Maxfield FR, Tabas I. Role of cholesterol and lipid organization in disease. Nature. 2005;438:612–21.10.1038/nature04399Search in Google Scholar PubMed
[154] Brown DA. Lipid droplets: proteins floating on a pool of fat. Curr Biol. 2001;11:R446–9.10.1016/S0960-9822(01)00257-3Search in Google Scholar PubMed
[155] Martin S, Parton RG. Lipid droplets: a unified view of a dynamic organelle. Nat Rev Mol Cell Biol. 2006;7:373–8.10.1038/nrm1912Search in Google Scholar PubMed
[156] Hayashi T, Su TP. σ-1 Receptors (σ1 binding sites) form raft-like microdomains and target lipid droplets on the endoplasmic reticulum: roles in endoplasmic reticulum lipid compartmentalization and export. J Pharmacol Exp Ther. 2003;306:718–25.10.1124/jpet.103.051284Search in Google Scholar PubMed
[157] Guo Y, Walther TC., Rao M, Stuurman N, Goshima G, Terayama K, et al. Functional genomic screen reveals genes involved in lipid-droplet formation and utilization. Nature. 2008;453(7195):657–661. DOI: 10.1038/nature06928.Search in Google Scholar PubMed PubMed Central
[158] Gidda SK, Park S, Pyc M. Lipid droplet-associated proteins (LDAPs) are required for the dynamic regulation of neutral lipid compartmentation in plant cells. Plant Physiol. 2016;170:2052–71.10.1104/pp.15.01977Search in Google Scholar PubMed PubMed Central
[159] Xu W, Wu L, Yu M, Chen FL, Arshad M, Xia X, et al. Differential roles of cell death-inducing DNA fragmentation factor-alpha-like effector (CIDE) proteins in promoting lipid droplet fusion and growth in subpopulations of hepatocytes. J Biol Chem. 2016;291:4282–93.10.1074/jbc.M115.701094Search in Google Scholar PubMed PubMed Central
[160] Hansen JS, de Maré S, Jones HA, Göransson O, Lindkvist-Petersson K. Visualization of lipid directed dynamics of perilipin 1 in human primary adipocytes. Sci Rep. 2017;7:15011.10.1038/s41598-017-15059-4Search in Google Scholar PubMed PubMed Central
[161] Hansen JS, Krintel C, Hernebring M, Haataja TJ, de Mare S, Wasserstrom S, et al. Perilipin 1 binds to aquaporin 7 in human adipocytes and controls its mobility via protein kinase A mediated phosphorylation. Metabolism. 2016;65:1731–42.10.1016/j.metabol.2016.09.004Search in Google Scholar PubMed
[162] Brasaemle DL. Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J Lipid Res. 2007;48:2547–59.10.1194/jlr.R700014-JLR200Search in Google Scholar PubMed
[163] Bae JY, Woo J, Roh HT, Lee YH, Ko K, Kang S, et al. The effects of detraining and training on adipose tissue lipid droplet in obese mice after chronic high-fat diet. Lipids Health Dis. 2017;16:13.10.1186/s12944-016-0398-xSearch in Google Scholar PubMed PubMed Central
[164] Gallardo-Montejano VI, Saxena G, Kusminski CM, Yang C, McAfee JL. Nuclear Perilipin 5 integrates lipid droplet lipolysis with PGC-1alpha/SIRT1-dependent transcriptional regulation of mitochondrial function. Nat Commun. 2016;7:12723.10.1038/ncomms12723Search in Google Scholar PubMed PubMed Central
[165] Kaushik S, Cuervo AM. Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. Nat Cell Biol. 2015;17:759–70.10.1038/ncb3166Search in Google Scholar PubMed PubMed Central
[166] Ito M, Nagasawa M, Hara T, Ide T, Murakami K. Differential roles of CIDEA and CIDEC in insulin-induced anti-apoptosis and lipid droplet formation in human adipocytes. J Lipid Res. 2010;51:1676–84.10.1194/jlr.M002147Search in Google Scholar PubMed PubMed Central
[167] Ye J, Li JZ, Liu Y, Li X, Yang T, Ma X, et al. Cideb, an ER-and lipid droplet-associated protein, mediates VLDL lipidation and maturation by interacting with apolipoprotein B. Cell Metab. 2009;9:177–90.10.1016/j.cmet.2008.12.013Search in Google Scholar PubMed
[168] Hallberg M, Morganstein DL, Kiskinis E, Shah K, Kralli A, Dilworth SM, et al. A functional interaction between RIP140 and PGC-1α regulates the expression of the lipid droplet protein CIDEA. Mol Cell Biol. 2008;28:6785–95.10.1128/MCB.00504-08Search in Google Scholar PubMed PubMed Central
[169] Greenberg AS, Coleman RA, Kraemer FB, McManaman JL, Obin MS, Puri V, et al. The role of lipid droplets in metabolic disease in rodents and humans. J Clin Invest. 2011;121:2102.10.1172/JCI46069Search in Google Scholar PubMed PubMed Central
[170] Chang TY, Chang CC, Lin S, Yu C, Li BL, Miyazaki A. Roles of acyl-coenzyme A: cholesterol acyltransferase-1 and-2. Curr Opin Lipidol. 2001;12:289–96.10.1097/00041433-200106000-00008Search in Google Scholar PubMed
[171] Cox BE, Griffin EE, Ullery JC, Jerome WG. Effects of cellular cholesterol loading on macrophage foam cell lysosome acidification. J Lipid Res. 2007;48:1012–21.10.1194/jlr.M600390-JLR200Search in Google Scholar PubMed
[172] Brown MS, Goldstein JL. Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu Rev Biochem. 1983;52:223–61.10.1146/annurev.bi.52.070183.001255Search in Google Scholar PubMed
[173] Zhu X, Lee JY, Timmins JM, Brown JM, Boudyguina E, Mulya A, et al. Increased cellular free cholesterol in macrophage-specific Abca1 knock-out mice enhances pro-inflammatory response of macrophages. J Biol Chem. 2008;283:22930–41.10.1074/jbc.M801408200Search in Google Scholar PubMed PubMed Central
[174] Liu J, Chang CC, Westover EJ, Covey DF, Chang TY. Investigating the allosterism of acyl-CoA: cholesterol acyltransferase (ACAT) by using various sterols: in vitro and intact cell studies. Biochem J. 2005;391:389–97.10.1042/BJ20050428Search in Google Scholar PubMed PubMed Central
[175] Ouimet M, Marcel YL. Regulation of lipid droplet cholesterol efflux from macrophage foam cells. Arterioscler Thromb Vasc Biol. 2012;32:575–81.10.1161/ATVBAHA.111.240705Search in Google Scholar PubMed
[176] Feng B, Yao PM, Li Y, Devlin CM, Zhang D, Harding HP, et al. The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nat Cell Biol. 2003;5:781–92.10.1038/ncb1035Search in Google Scholar PubMed
©2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Original Articles
- Melatonin and cryptochrome 2 in metabolic syndrome patients with or without diabetes: a cross-sectional study
- Changes to trimethylamine-N-oxide and its precursors in nascent metabolic syndrome
- Is FGF23 effective on insulin resistance in individuals with metabolic syndrome?
- Review Article
- Circulating low density lipoprotein (LDL)
- Case Report
- Congenital complete heart block in pregnancy
Articles in the same Issue
- Original Articles
- Melatonin and cryptochrome 2 in metabolic syndrome patients with or without diabetes: a cross-sectional study
- Changes to trimethylamine-N-oxide and its precursors in nascent metabolic syndrome
- Is FGF23 effective on insulin resistance in individuals with metabolic syndrome?
- Review Article
- Circulating low density lipoprotein (LDL)
- Case Report
- Congenital complete heart block in pregnancy