Startseite Hormonal factors in the control of the browning of white adipose tissue
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Hormonal factors in the control of the browning of white adipose tissue

  • Jiamiao Hu und Mark Christian EMAIL logo
Veröffentlicht/Copyright: 21. Juli 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Adipose tissue has been historically classified into anabolic white adipose tissue (WAT) and catabolic brown adipose tissue (BAT). Recent studies have revealed the plasticity of WAT, where white adipocytes can be induced into ‘brown-like’ heat-producing adipocytes (BRITE or beige adipocytes). Recruiting and activating BRITE adipocytes in WAT (so-called ‘browning’) is believed to provide new avenues for the treatment of obesity-related diseases. A number of hormonal factors have been found to regulate BRITE adipose development and activity through autocrine, paracrine and systemic mechanisms. In this mini-review we will discuss the impact of these factors on the browning process, especially those hormonal factors identified with direct effects on white adipocytes.

Author statement

  1. Research funding: Authors state no funding involved.

  2. Conflict of interest: Authors state no conflict of interest.

  3. Informed consent: Informed consent is not applicable.

  4. Ethical approval: The conducted research is not related to either human or animal use.

References

[1] Rosell M, Kaforou M, Frontini A, Okolo A, Chan YW, Nikolopoulou E, et al. Brown and white adipose tissues: intrinsic differences in gene expression and response to cold exposure in mice. Am J Physiol Endocrinol Metab. 2014;306:E945–64.10.1152/ajpendo.00473.2013Suche in Google Scholar

[2] Chakraborty D, Bhattacharya A, Mittal BR. Patterns of brown fat uptake of 18F-fluorodeoxyglucose in positron emission tomography/computed tomography scan. Indian J Nucl Med. 2015;30:320–2.10.4103/0972-3919.164147Suche in Google Scholar

[3] Kozak LP. Brown fat and the myth of diet-induced thermogenesis. Cell Metab. 2010;11:263–57.10.1016/j.cmet.2010.03.009Suche in Google Scholar

[4] Himms-Hagen J, Cui J, Danforth E, Taatjes DJ, Lang SS, Waters BL, et al. Effect of CL-316,243, a thermogenic beta 3-agonist, on energy balance and brown and white adipose tissues in rats. Am J Physiol. 1994;266:R1371–82.10.1152/ajpregu.1994.266.4.R1371Suche in Google Scholar

[5] Cousin B, Cinti S, Morroni M, Raimbault S, Ricquier D, Penicaud L, et al. Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization. J Cell Sci. 1992;103:931–42.10.1242/jcs.103.4.931Suche in Google Scholar

[6] Shan T, Liang X, Bi P, Zhang P, Liu W, Kuang S. Distinct populations of adipogenic and myogenic Myf5-lineage progenitors in white adipose tissues. J Lipid Res. 2013;54:2214–24.10.1194/jlr.M038711Suche in Google Scholar

[7] Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012;150:366–76.10.1016/j.cell.2012.05.016Suche in Google Scholar

[8] Carey AL, Vorlander C, Reddy-Luthmoodoo M, Natoli AK, Formosa MF, Bertovic DA, et al. Reduced UCP-1 content in in vitro differentiated beige/brite adipocytes derived from preadipocytes of human subcutaneous white adipose tissues in obesity. PLoS One. 2014;e919979.10.1371/journal.pone.0091997Suche in Google Scholar

[9] Sharp LZ, Shinoda K, Ohno H, Scheel DW, Tomoda E, Ruiz L, et al. Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS One. 2012;e494527.10.1371/journal.pone.0049452Suche in Google Scholar

[10] Villarroya F, Vidal-Puig A. Beyond the sympathetic tone: the new brown fat activators. Cell Metab. 2013;17:638–43.10.1016/j.cmet.2013.02.020Suche in Google Scholar

[11] Kim SH, Plutzky J. Brown fat and browning for the treatment of obesity and related metabolic disorders. Diabetes Metab J. 2016;40:12–21.10.4093/dmj.2016.40.1.12Suche in Google Scholar

[12] Collins S, Yehuda-Shnaidman E, Wang H. Positive and negative control of Ucp1 gene transcription and the role of beta-adrenergic signaling networks. Int J Obes (Lond). 2010;34:S28–33.10.1038/ijo.2010.180Suche in Google Scholar

[13] Fedorenko A, Lishko PV, Kirichok Y. Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell. 2012;151:400–13.10.1016/j.cell.2012.09.010Suche in Google Scholar

[14] Ricquier D. Uncoupling protein 1 of brown adipocytes, the only uncoupler: a historical perspective. Front Endocrinol (Lausanne). 2011;2:85.10.3389/fendo.2011.00085Suche in Google Scholar

[15] Rim JS, Kozak LP. Regulatory motifs for CREB-binding protein and Nfe2l2 transcription factors in the upstream enhancer of the mitochondrial uncoupling protein 1 gene. J Biol Chem. 2002;277:34589–600.10.1074/jbc.M108866200Suche in Google Scholar

[16] Villarroya F, Iglesias R, Giralt M. PPARs in the control of uncoupling proteins gene expression. PPAR Res. 2007;2007:74364.10.1155/2007/74364Suche in Google Scholar

[17] Cannon B, Jacobsson A, Rehnmark S, Nedergaard J. Signal transduction in brown adipose tissue recruitment: noradrenaline and beyond. Int J Obes Relat Metab Disord. 1996;20:S36–42.Suche in Google Scholar

[18] Laiglesia LM, Lorente-Cebrian S, Prieto-Hontoria PL, Fernandez-Galilea M, Ribeiro SM, Sainz N, et al. Eicosapentaenoic acid promotes mitochondrial biogenesis and beige-like features in subcutaneous adipocytes from overweight subjects. J Nutr Biochem. 2016;37:76–82.10.1016/j.jnutbio.2016.07.019Suche in Google Scholar

[19] Cinti S. The adipose organ at a glance. Dis Model Mech. 2012;5:588–94.10.1242/dmm.009662Suche in Google Scholar

[20] Matthias A, Ohlson KB, Fredriksson JM, Jacobsson A, Nedergaard J, Cannon B. Thermogenic responses in brown fat cells are fully UCP1-dependent. UCP2 or UCP3 do not substitute for UCP1 in adrenergically or fatty scid-induced thermogenesis. J Biol Chem. 2000;275:25073–81.10.1074/jbc.M000547200Suche in Google Scholar

[21] Puigserver P, Pico C, Stock MJ, Palou A. Effect of selective beta-adrenoceptor stimulation on UCP synthesis in primary cultures of brown adipocytes. Mol Cell Endocrinol. 1996;117:7–16.10.1016/0303-7207(95)03727-6Suche in Google Scholar

[22] Wu Q, Kazantzis M, Doege H, Ortegon AM, Tsang B, Falcon A, et al. Fatty acid transport protein 1 is required for nonshivering thermogenesis in brown adipose tissue. Diabetes. 2006;55:3229–37.10.2337/db06-0749Suche in Google Scholar

[23] Galitzky J, Carpene C, Bousquet-Melou A, Berlan M, Lafontan M. Differential activation of beta 1-, beta 2- and beta 3-adrenoceptors by catecholamines in white and brown adipocytes. Fundam Clin Pharmacol. 1995;9:324–31.10.1111/j.1472-8206.1995.tb00506.xSuche in Google Scholar

[24] Jimenez M, Barbatelli G, Allevi R, Cinti S, Seydoux J, Giacobino JP, et al. Beta 3-adrenoceptor knockout in C57BL/6J mice depresses the occurrence of brown adipocytes in white fat. Eur J Biochem. 2003;270:699–705.10.1046/j.1432-1033.2003.03422.xSuche in Google Scholar

[25] de Jong Jasper M. A., Wouters René T. F., Boulet Nathalie, Cannon Barbara, Nedergaard Jan, Petrovic Natasa. The β 3 -adrenergic receptor is dispensable for browning of adipose tissues. American Journal of Physiology - Endocrinology And Metabolism. 2017 2 21;312(6):E508–E518. DOI:10.1152/ajpendo.00437.2016.Suche in Google Scholar PubMed

[26] Sidossis LS, Porter C, Saraf MK, Borsheim E, Radhakrishnan RS, Chao T, et al. Browning of subcutaneous white adipose tissue in humans after severe adrenergic stress. Cell Metab. 2015;22:219–27.10.1016/j.cmet.2015.06.022Suche in Google Scholar

[27] Cypess AM, Weiner LS, Roberts-Toler C, Franquet Elia E, Kessler SH, Kahn PA, et al. Activation of human brown adipose tissue by a beta3-adrenergic receptor agonist. Cell Metab. 2015;21:33–8.10.1016/j.cmet.2014.12.009Suche in Google Scholar

[28] Christian M. Nuclear receptor-mediated regulation of lipid droplet-associated protein gene expression in adipose tissue. Horm Mol Biol Clin Investig. 2013;14:87–97.10.1515/hmbci-2013-0028Suche in Google Scholar

[29] Weiner J, Kranz M, Klöting N, Kunath A, Steinhoff K, Rijntjes E, et al. Thyroid hormone status defines brown adipose tissue activity and browning of white adipose tissues in mice. Sci Rep. 2016;6:38124.10.1038/srep38124Suche in Google Scholar

[30] Lopez M, Varela L, Vazquez MJ, Rodriguez-Cuenca S, Gonzalez CR, Velagapudi VR, et al. Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nat Med. 2010;16:1001–8.10.1038/nm.2207Suche in Google Scholar

[31] Cassard-Doulcier AM, Larose M, Matamala JC, Champigny O, Bouillaud F, Ricquier D. In vitro interactions between nuclear proteins and uncoupling protein gene promoter reveal several putative transactivating factors including Ets1, retinoid X receptor, thyroid hormone receptor, and a CACCC box-binding protein. J Biol Chem. 1994;269:24335–42.10.1016/S0021-9258(19)51087-0Suche in Google Scholar

[32] de Jesus LA, Carvalho SD, Ribeiro MO, Schneider M, Kim SW, Harney JW, et al. The type 2 iodothyronine deiodinase is essential for adaptive thermogenesis in brown adipose tissue. J Clin Invest. 2001;108:1379–85.10.1172/JCI13803Suche in Google Scholar

[33] Krause K, Kranz M, Weiner J, Klöting N, Rijntjes E, Köhrle J, et al. Influence of thyroid hormones on brown adipose tissue activity and browning of white adipose tissues in mice. Exp Clin Endocrinol Diabetes. 2015;123:LB_10.10.1055/s-0035-1549076Suche in Google Scholar

[34] Lin JZ, Martagon AJ, Cimini SL, Gonzalez DD, Tinkey DW, Biter A, et al. Pharmacological activation of thyroid hormone receptors elicits a functional conversion of white to brown fat. Cell Rep. 2015;13:1528–37.10.1016/j.celrep.2015.10.022Suche in Google Scholar

[35] Basse AL, Dixen K, Yadav R, Tygesen MP, Qvortrup K, Kristiansen K, et al. Global gene expression profiling of brown to white adipose tissue transformation in sheep reveals novel transcriptional components linked to adipose remodeling. BMC Geno. 2015;16:215.10.1186/s12864-015-1405-8Suche in Google Scholar

[36] Miao Y, Wu W, Dai Y, Maneix L, Huang B, Warner M, et al. Liver X receptor beta controls thyroid hormone feedback in the brain and regulates browning of subcutaneous white adipose tissue. Proc Natl Acad Sci USA. 2015;112:14006–11.10.1073/pnas.1519358112Suche in Google Scholar

[37] Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, et al. FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 2012;26:271–81.10.1101/gad.177857.111Suche in Google Scholar

[38] Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, et al. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481:463–8.10.1038/nature10777Suche in Google Scholar

[39] Zhang Y, Li R, Meng Y, Li S, Donelan W, Zhao Y, et al. Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling. Diabetes. 2014;63:514–25.10.2337/db13-1106Suche in Google Scholar

[40] Zhang Y, Xie C, Wang H, Foss RM, Clare M, George EV, et al. Irisin exerts dual effects on browning and adipogenesis of human white adipocytes. Am J Physiol Endocrinol Metab. 2016;311:E530–41.10.1152/ajpendo.00094.2016Suche in Google Scholar

[41] Hondares E, Iglesias R, Giralt A, Gonzalez FJ, Giralt M, Mampel T, et al. Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J Biol Chem. 2011;286:12983–90.10.1074/jbc.M110.215889Suche in Google Scholar

[42] Owen BM, Ding X, Morgan DA, Coate KC, Bookout AL, Rahmouni K, et al. FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab. 2014;20:670–7.10.1016/j.cmet.2014.07.012Suche in Google Scholar

[43] Douris N, Stevanovic DM, Fisher FM, Cisu TI, Chee MJ, Nguyen NL, et al. Central fibroblast growth factor 21 browns white fat via sympathetic action in male mice. Endocrinology. 2015;156:2470–81.10.1210/en.2014-2001Suche in Google Scholar

[44] Mu J, Pinkstaff J, Li Z, Skidmore L, Li N, Myler H, et al. FGF21 analogs of sustained action enabled by orthogonal biosynthesis demonstrate enhanced antidiabetic pharmacology in rodents. Diabetes. 2012;61:505–12.10.2337/db11-0838Suche in Google Scholar

[45] Hecht R, Li YS, Sun J, Belouski E, Hall M, Hager T, et al. Rationale-based engineering of a potent long-acting FGF21 analog for the treatment of type 2 Diabetes. PLoS One. 2012;e493457.10.1371/journal.pone.0049345Suche in Google Scholar

[46] Huang J, Ishino T, Chen G, Rolzin P, Osothprarop TF, Retting K, et al. Development of a novel long-acting antidiabetic FGF21 mimetic by targeted conjugation to a scaffold antibody. J Pharmacol Exp Ther. 2013;346:270–80.10.1124/jpet.113.204420Suche in Google Scholar

[47] Veniant MM, Sivits G, Helmering J, Komorowski R, Lee J, Fan W, et al. Pharmacologic effects of FGF21 are independent of the “Browning” of white adipose tissue. Cell Metab. 2015;21:731–8.10.1016/j.cmet.2015.04.019Suche in Google Scholar

[48] Jeanson Y, Ribas F, Galinier A, Arnaud E, Ducos M, Andre M, et al. Lactate induces FGF21 expression in adipocytes through a p38-MAPK pathway. Biochem J. 2016;473:685–92.10.1042/BJ20150808Suche in Google Scholar

[49] Quesada-Lopez T, Cereijo R, Turatsinze JV, Planavila A, Cairo M, Gavalda-Navarro A, et al. The lipid sensor GPR120 promotes brown fat activation and FGF21 release from adipocytes. Nat Commun. 2016;7:13479.10.1038/ncomms13479Suche in Google Scholar

[50] Liang Q, Zhong L, Zhang J, Wang Y, Bornstein SR, Triggle CR, et al. FGF21 maintains glucose homeostasis by mediating the cross talk between liver and brain during prolonged fasting. Diabetes. 2014;63:4064–75.10.2337/db14-0541Suche in Google Scholar

[51] Ribas F, Villarroya J, Hondares E, Giralt M, Villarroya F. FGF21 expression and release in muscle cells: involvement of MyoD and regulation by mitochondria-driven signalling. Biochem J. 2014;463:191–9.10.1042/BJ20140403Suche in Google Scholar

[52] Vandanmagsar B, Warfel JD, Wicks SE, Ghosh S, Salbaum JM, Burk D, et al. Impaired mitochondrial fat oxidation induces FGF21 in muscle. Cell Rep. 2016;15:1686–99.10.1016/j.celrep.2016.04.057Suche in Google Scholar

[53] Rao RR, Long JZ, White JP, Svensson KJ, Lou J, Lokurkar I, et al. Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell. 2014;157:1279–91.10.1016/j.cell.2014.03.065Suche in Google Scholar

[54] Mossenbock K, Vegiopoulos A, Rose AJ, Sijmonsma TP, Herzig S, Schafmeier T. Browning of white adipose tissue uncouples glucose uptake from insulin signaling. PLoS One. 2014;e1104289.10.1371/journal.pone.0110428Suche in Google Scholar

[55] Dodd GT, Decherf S, Loh K, Simonds SE, Wiede F, Balland E, et al. Leptin and insulin act on POMC neurons to promote the browning of white fat. Cell. 2015;160:88–104.10.1016/j.cell.2014.12.022Suche in Google Scholar

[56] Billington CJ, Bartness TJ, Briggs J, Levine AS, Morley JE. Glucagon stimulation of brown adipose tissue growth and thermogenesis. Am J Physiol. 1987;252:R160–5.10.1152/ajpregu.1987.252.1.R160Suche in Google Scholar

[57] Kinoshita K, Ozaki N, Takagi Y, Murata Y, Oshida Y, Hayashi Y. Glucagon is essential for adaptive thermogenesis in brown adipose tissue. Endocrinology. 2014;155:3484–92.10.1210/en.2014-1175Suche in Google Scholar

[58] Salem V, Izzi-Engbeaya C, Coello C, Thomas DB, Chambers ES, Comninos AN, et al. Glucagon increases energy expenditure independently of brown adipose tissue activation in humans. Diabetes Obes Metab. 2016;18:72–81.10.1111/dom.12585Suche in Google Scholar

[59] Lockie SH, Heppner KM, Chaudhary N, Chabenne JR, Morgan DA, Veyrat-Durebex C, et al. Direct control of brown adipose tissue thermogenesis by central nervous system glucagon-like peptide-1 receptor signaling. Diabetes. 2012;61:2753–62.10.2337/db11-1556Suche in Google Scholar

[60] Beiroa D, Imbernon M, Gallego R, Senra A, Herranz D, Villarroya F, et al. GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes. 2014;63:3346–58.10.2337/db14-0302Suche in Google Scholar

[61] Fernandes-Santos C, Zhang Z, Morgan DA, Guo DF, Russo AF, Rahmouni K. Amylin acts in the central nervous system to increase sympathetic nerve activity. Endocrinology. 2013;154:2481–8.10.1210/en.2012-2172Suche in Google Scholar

[62] Yoshimatsu H, Egawa M, Bray GA. Effects of cholecystokinin on sympathetic activity to interscapular brown adipose tissue. Brain Res. 1992;597:298–303.10.1016/0006-8993(92)91486-XSuche in Google Scholar

[63] Madden CJ. Systemic CCK increases brown adipose tissue sympathetic nerve activity. FASEB J. 2013;27:1120–5.10.1096/fasebj.27.1_supplement.1120.5Suche in Google Scholar

[64] Skibicka KP, Hansson C, Alvarez-Crespo M, Friberg PA, Dickson SL. Ghrelin directly targets the ventral tegmental area to increase food motivation. Neuroscience. 2011;180:129–37.10.1016/j.neuroscience.2011.02.016Suche in Google Scholar

[65] Tschop M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature. 2000;407:908–13.10.1038/35038090Suche in Google Scholar

[66] Cowley MA, Smith RG, Diano S, Tschop M, Pronchuk N, Grove KL, et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron. 2003;37:649–61.10.1016/S0896-6273(03)00063-1Suche in Google Scholar

[67] Yasuda T, Masaki T, Kakuma T, Yoshimatsu H. Centrally administered ghrelin suppresses sympathetic nerve activity in brown adipose tissue of rats. Neurosci Lett. 2003;349:75–8.10.1016/S0304-3940(03)00789-4Suche in Google Scholar

[68] Nagase H, Bray GA, York DA. Effect of galanin and enterostatin on sympathetic nerve activity to interscapular brown adipose tissue. Brain Res. 1996;709:44–50.10.1016/0006-8993(95)01292-3Suche in Google Scholar

[69] Teodoro JS, Zouhar P, Flachs P, Bardova K, Janovska P, Gomes AP, et al. Enhancement of brown fat thermogenesis using chenodeoxycholic acid in mice. Int J Obes (Lond). 2014;38:1027–34.10.1038/ijo.2013.230Suche in Google Scholar

[70] Zietak M, Kozak LP. Bile acids induce uncoupling protein 1-dependent thermogenesis and stimulate energy expenditure at thermoneutrality in mice. Am J Physiol Endocrinol Metab. 2016;310:E346–54.10.1152/ajpendo.00485.2015Suche in Google Scholar

[71] Broeders EP, Nascimento EB, Havekes B, Brans B, Roumans KH, Tailleux A, et al. The bile acid chenodeoxycholic acid increases human brown adipose tissue activity. Cell Metab. 2015;22:418–26.10.1016/j.cmet.2015.07.002Suche in Google Scholar

[72] Fang S, Suh JM, Reilly SM, Yu E, Osborn O, Lackey D, et al. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat Med. 2015;21:159–65.10.1038/nm.3760Suche in Google Scholar

[73] Steculorum SM, Ruud J, Karakasilioti I, Backes H, Engstrom Ruud L, Timper K, et al. AgRP neurons control systemic insulin sensitivity via myostatin expression in brown adipose tissue. Cell. 2016;165:125–38.10.1016/j.cell.2016.02.044Suche in Google Scholar

[74] Zhang W, Bi S. Hypothalamic regulation of brown adipose tissue thermogenesis and energy homeostasis. Front Endocrinol (Lausanne). 2015;6:136.10.3389/fendo.2015.00136Suche in Google Scholar

[75] Ruan HB, Dietrich MO, Liu ZW, Zimmer MR, Li MD, Singh JP, et al. O-GlcNAc transferase enables AgRP neurons to suppress browning of white fat. Cell. 2014;159:306–17.10.1016/j.cell.2014.09.010Suche in Google Scholar

[76] Turtzo LC, Marx R, Lane MD. Cross-talk between sympathetic neurons and adipocytes in coculture. Proc Natl Acad Sci USA. 2001;98:12385–90.10.1073/pnas.231478898Suche in Google Scholar

[77] Bi S. Dorsomedial hypothalamic NPY modulation of adiposity and thermogenesis. Physiol Behav. 2013;121:56–60.10.1016/j.physbeh.2013.03.022Suche in Google Scholar

[78] Blevins JE, Ho JM. Role of oxytocin signaling in the regulation of body weight. Rev Endocr Metab Disord. 2013;14:311–29.10.1007/s11154-013-9260-xSuche in Google Scholar

[79] Klockars A, Levine AS, Olszewski PK. Central oxytocin and food intake: focus on macronutrient-driven reward. Front Endocrinol. 2015;6:65.10.3389/fendo.2015.00065Suche in Google Scholar

[80] Takayanagi Y, Kasahara Y, Onaka T, Takahashi N, Kawada T, Nishimori K. Oxytocin receptor-deficient mice developed late-onset obesity. Neuroreport. 2008;19:951–5.10.1097/WNR.0b013e3283021ca9Suche in Google Scholar

[81] Plante E, Menaouar A, Danalache BA, Yip D, Broderick TL, Chiasson JL, et al. Oxytocin treatment prevents the cardiomyopathy observed in obese diabetic male db/db mice. Endocrinology. 2015;156:1416–28.10.1210/en.2014-1718Suche in Google Scholar

[82] LeFeuvre RA, Rothwell NJ, Stock MJ. Activation of brown fat thermogenesis in response to central injection of corticotropin releasing hormone in the rat. Neuropharmacology. 1987;26:1217–21.10.1016/0028-3908(87)90272-3Suche in Google Scholar

[83] Seres J, Bornstein SR, Seres P, Willenberg HS, Schulte KM, Scherbaum WA, et al. Corticotropin-releasing hormone system in human adipose tissue. J Clin Endocrinol Metab. 2004;89:965–70.10.1210/jc.2003-031299Suche in Google Scholar

[84] Lu B, Markovic D, Pessin J, Lehnert H, Grammatopoulos D. Unique roles of CRH-Rs controlling adipocyte biology and transdifferentiation. Endocrine Abstracts. 2012;28:P218.Suche in Google Scholar

[85] Lu B, Diz-Chaves Y, Markovic D, Contarino A, Penicaud L, Fanelli F, et al. The corticotrophin-releasing factor/urocortin system regulates white fat browning in mice through paracrine mechanisms. Int J Obes (Lond). 2015;39:408–17.10.1038/ijo.2014.164Suche in Google Scholar

[86] Wang C, Billington CJ, Levine AS, Kotz CM. Effect of CART in the hypothalamic paraventricular nucleus on feeding and uncoupling protein gene expression. Neuroreport. 2000;11:3251–5.10.1097/00001756-200009280-00040Suche in Google Scholar

[87] Masaki T, Yoshimichi G, Chiba S, Yasuda T, Noguchi H, Kakuma T, et al. Corticotropin-releasing hormone-mediated pathway of leptin to regulate feeding, adiposity, and uncoupling protein expression in mice. Endocrinology. 2003;144:3547–54.10.1210/en.2003-0301Suche in Google Scholar

[88] Beauregard C, Utz AL, Schaub AE, Nachtigall L, Biller BM, Miller KK, et al. Growth hormone decreases visceral fat and improves cardiovascular risk markers in women with hypopituitarism: a randomized, placebo-controlled study. J Clin Endocrinol Metab. 2008;93:2063–71.10.1210/jc.2007-2371Suche in Google Scholar

[89] Abrahamsen B, Nielsen TL, Hangaard J, Gregersen G, Vahl N, Korsholm L, et al. Dose-, IGF-I- and sex-dependent changes in lipid profile and body composition during GH replacement therapy in adult onset GH deficiency. Eur J Endocrinol. 2004;150:671–9.10.1530/eje.0.1500671Suche in Google Scholar

[90] Chihara K, Fujieda K, Shimatsu A, Miki T, Tachibana K. Dose-dependent changes in body composition during growth hormone (GH) treatment in Japanese patients with adult GH deficiency: a randomized, placebo-controlled trial. Growth Horm IGF Res. 2010;20:205–11.10.1016/j.ghir.2010.01.003Suche in Google Scholar

[91] Egecioglu E, Bjursell M, Ljungberg A, Dickson SL, Kopchick JJ, Bergstrom G, et al. Growth hormone receptor deficiency results in blunted ghrelin feeding response, obesity, and hypolipidemia in mice. Am J Physiol Endocrinol Metab. 2006;290:E317–25.10.1152/ajpendo.00181.2005Suche in Google Scholar

[92] Li Y, Knapp JR, Kopchick JJ. Enlargement of interscapular brown adipose tissue in growth hormone antagonist transgenic and in growth hormone receptor gene-disrupted dwarf mice. Exp Biol Med (Maywood). 2003;228:207–15.10.1177/153537020322800212Suche in Google Scholar

[93] Sun LY. Growth Hormone-Releasing Hormone Disruption Extends Longevity, Regulates Response to Dietary Restriction, Promotes Browning of White Adipose Tissue and Ameliorates High Fat Diet-Induced Insulin Resistance.. Endocrine Society: GH, IGF and Posterior Pituitary 2015:FRI-448 Endocrine Society's 97th Annual Meeting and Expo, March 5–8, 2015 - San Diego.Suche in Google Scholar

[94] Woo MN, Jeon SM, Shin YC, Lee MK, Kang MA, Choi MS. Anti-obese property of fucoxanthin is partly mediated by altering lipid-regulating enzymes and uncoupling proteins of visceral adipose tissue in mice. Mol Nutr Food Res. 2009;53:1603–11.10.1002/mnfr.200900079Suche in Google Scholar

[95] Kim M, Goto T, Yu R, Uchida K, Tominaga M, Kano Y, et al. Fish oil intake induces UCP1 upregulation in brown and white adipose tissue via the sympathetic nervous system. Sci Rep. 2015;5:18013.10.1038/srep18013Suche in Google Scholar

[96] Cao L, Choi EY, Liu X, Martin A, Wang C, Xu X, et al. White to brown fat phenotypic switch induced by genetic and environmental activation of a hypothalamic-adipocyte axis. Cell Metab. 2011;14:324–38.10.1016/j.cmet.2011.06.020Suche in Google Scholar

[97] Guerre-Millo M. Adipose tissue hormones. J Endocrinol Invest. 2002;25:855–61.10.1007/BF03344048Suche in Google Scholar

[98] Commins SP, Watson PM, Padgett MA, Dudley A, Argyropoulos G, Gettys TW. Induction of uncoupling protein expression in brown and white adipose tissue by leptin. Endocrinology. 1999;140:292–300.10.1210/en.140.1.292Suche in Google Scholar

[99] Commins SP, Watson PM, Levin N, Beiler RJ, Gettys TW. Central leptin regulates the UCP1 and ob genes in brown and white adipose tissue via different beta-adrenoceptor subtypes. J Biol Chem. 2000;275:33059–67.10.1074/jbc.M006328200Suche in Google Scholar

[100] Qian SW, Tang Y, Li X, Liu Y, Zhang YY, Huang HY, et al. BMP4-mediated brown fat-like changes in white adipose tissue alter glucose and energy homeostasis. Proc Natl Acad Sci USA. 2013;110:E798–807.10.1073/pnas.1215236110Suche in Google Scholar

[101] Tseng YH, Kokkotou E, Schulz TJ, Huang TL, Winnay JN, Taniguchi CM, et al. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature. 2008;454:1000–4.10.1038/nature07221Suche in Google Scholar

[102] Whittle AJ, Carobbio S, Martins L, Slawik M, Hondares E, Vazquez MJ, et al. BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell. 2012;149:871–85.10.1016/j.cell.2012.02.066Suche in Google Scholar

[103] Gustafson B, Hammarstedt A, Hedjazifar S, Hoffmann JM, Svensson PA, Grimsby J, et al. BMP4 and BMP antagonists regulate human white and beige adipogenesis. Diabetes. 2015;64:1670–81.10.2337/db14-1127Suche in Google Scholar

[104] Madsen L, Pedersen LM, Lillefosse HH, Fjaere E, Bronstad I, Hao Q, et al. UCP1 induction during recruitment of brown adipocytes in white adipose tissue is dependent on cyclooxygenase activity. PLoS One. 2010;5:e11391.10.1371/journal.pone.0011391Suche in Google Scholar

[105] Vegiopoulos A, Muller-Decker K, Strzoda D, Schmitt I, Chichelnitskiy E, Ostertag A, et al. Cyclooxygenase-2 controls energy homeostasis in mice by de novo recruitment of brown adipocytes. Sci. 2010;328:1158–61.10.1126/science.1186034Suche in Google Scholar

[106] Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential. Nat Med. 2013;19:1252–63.10.1038/nm.3361Suche in Google Scholar

[107] Murano I, Barbatelli G, Giordano A, Cinti S. Noradrenergic parenchymal nerve fiber branching after cold acclimatisation correlates with brown adipocyte density in mouse adipose organ. J Anat. 2009;214:171–8.10.1111/j.1469-7580.2008.01001.xSuche in Google Scholar

[108] Asano A, Morimatsu M, Nikami H, Yoshida T, Saito M. Adrenergic activation of vascular endothelial growth factor mRNA expression in rat brown adipose tissue: implication in cold-induced angiogenesis. Biochem J. 1997;328:179–83.10.1042/bj3280179Suche in Google Scholar

[109] Xue Y, Petrovic N, Cao R, Larsson O, Lim S, Chen S, et al. Hypoxia-independent angiogenesis in adipose tissues during cold acclimation. Cell Metab. 2009;9:99–109.10.1016/j.cmet.2008.11.009Suche in Google Scholar

[110] Elias I, Franckhauser S, Ferre T, Vila L, Tafuro S, Munoz S, et al. Adipose tissue overexpression of vascular endothelial growth factor protects against diet-induced obesity and insulin resistance. Diabetes. 2012;61:1801–13.10.2337/db11-0832Suche in Google Scholar

[111] During MJ, Liu X, Huang W, Magee D, Slater A, McMurphy T, et al. Adipose VEGF links the white-to-brown fat switch with environmental, genetic, and pharmacological stimuli in male mice. Endocrinology. 2015;156:2059–73.10.1210/en.2014-1905Suche in Google Scholar

[112] Ye L, Wu J, Cohen P, Kazak L, Khandekar MJ, Jedrychowski MP, et al. Fat cells directly sense temperature to activate thermogenesis. Proc Natl Acad Sci USA. 2013;110:12480–5.10.1073/pnas.1310261110Suche in Google Scholar

[113] Nguyen KD, Qiu Y, Cui X, Goh YP, Mwangi J, David T, et al. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature. 2011;480:104–8.10.1038/nature10653Suche in Google Scholar

[114] Kuji I, Imabayashi E, Minagawa A, Matsuda H, Miyauchi T. Brown adipose tissue demonstrating intense FDG uptake in a patient with mediastinal pheochromocytoma. Ann Nucl Med. 2008;22:231–5.10.1007/s12149-007-0096-xSuche in Google Scholar

[115] Iyer RB, Guo CC, Perrier N. Adrenal pheochromocytoma with surrounding brown fat stimulation. AJR Am J Roentgenol. 2009;192:300–1.10.2214/AJR.08.1166Suche in Google Scholar

[116] Bordicchia M, Liu D, Amri EZ, Ailhaud G, Dessi-Fulgheri P, Zhang C, et al. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J Clin Invest. 2012;122:1022–36.10.1172/JCI59701Suche in Google Scholar

[117] Moreno-Aliaga MJ, Perez-Echarri N, Marcos-Gomez B, Larequi E, Gil-Bea FJ, Viollet B, et al. Cardiotrophin-1 is a key regulator of glucose and lipid metabolism. Cell Metab. 2011;14:242–53.10.1016/j.cmet.2011.05.013Suche in Google Scholar

[118] van Baak MA, Hul GB, Toubro S, Astrup A, Gottesdiener KM, DeSmet M, et al. Acute effect of L-796568, a novel beta 3-adrenergic receptor agonist, on energy expenditure in obese men. Clin Pharmacol Ther. 2002;71:272–9.10.1067/mcp.2002.122527Suche in Google Scholar

[119] Larsen TM, Toubro S, van Baak MA, Gottesdiener KM, Larson P, Saris WH, et al. Effect of a 28-d treatment with L-796568, a novel beta(3)-adrenergic receptor agonist, on energy expenditure and body composition in obese men. Am J Clin Nutr. 2002;76:780–8.10.1093/ajcn/76.4.780Suche in Google Scholar

[120] Baskaran P, Krishnan V, Ren J, Thyagarajan B. Capsaicin induces browning of white adipose tissue and counters obesity by activating TRPV1 channel-dependent mechanisms. Br J Pharmacol. 2016;173:2369–89.10.1111/bph.13514Suche in Google Scholar

[121] Saito M, Yoneshiro T. Capsinoids and related food ingredients activating brown fat thermogenesis and reducing body fat in humans. Curr Opin Lipidol. 2013;24:71–7.10.1097/MOL.0b013e32835a4f40Suche in Google Scholar

[122] Maeda H, Hosokawa M, Sashima T, Funayama K, Miyashita K. Fucoxanthin from edible seaweed, Undaria pinnatifida, shows antiobesity effect through UCP1 expression in white adipose tissues. Biochem Biophys Res Commun. 2005;332:392–7.10.1016/j.bbrc.2005.05.002Suche in Google Scholar

[123] Singhal V, Maffazioli GD, Ackerman KE, Lee H, Elia EF, Woolley R, et al. Effect of chronic athletic activity on brown fat in young women. PLoS One. 2016;e015635311.10.1371/journal.pone.0160129Suche in Google Scholar

Received: 2017-04-03
Accepted: 2017-05-11
Published Online: 2017-07-21

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 29.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hmbci-2017-0017/html
Button zum nach oben scrollen