Startseite When fat becomes an ally of the enemy: adipose tissue as collaborator in human breast cancer
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

When fat becomes an ally of the enemy: adipose tissue as collaborator in human breast cancer

  • Lore Lapeire , Hannelore Denys , Véronique Cocquyt und Olivier De Wever EMAIL logo
Veröffentlicht/Copyright: 8. Juli 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Since the discovery of leptin in 1994, our vision of adipose tissue as a static organ regulating mainly lipid storage and release has been completely overthrown, and adipose tissue is now seen as an active and integral organ in human physiology. In the past years, extensive research has tremendously given us more insights in the mechanisms and pathways involved not only in normal but also in ‘sick’ adipose tissue, for example, in obesity and lipodystrophy. With growing evidence of a link between obesity and several types of cancer, research focusing on the interaction between adipose tissue and cancer has begun to unravel the interesting but complex multi-lateral communication between the different players. With breast cancer as one of the first cancer types where a positive correlation between obesity and breast cancer incidence and prognosis in post-menopausal women was found, we have focused this review on the paracrine and endocrine role of adipose tissue in breast cancer initiation and progression. As important inter-species differences in adipose tissue occur, we mainly selected human adipose tissue- and breast cancer-based studies with a short reflection on therapeutic possibilities. This review is part of the special issue on “Adiposopathy in Cancer and (Cardio)Metabolic Diseases”.


Corresponding author: Prof. Dr. Olivier De Wever, Laboratory of Experimental Cancer Research, Department of Radiotherapy and Experimental Cancer Research, Ghent University Hospital, De Pintelaan 185, Building 1P7, 9000 Ghent, Belgium, Phone: +32 9 332 30 73, Fax: +32 9 332 49 91, E-mail:

Acknowledgments

The authors acknowledge grants from Universitair Ziekenhuis Gent (Spearhead Breast Cancer), National Cancer Plan (Belgium, KPC_29_012), and Ghent University – Bijzonder Onderzoeksfonds (BOF2006-24J).

References

1. IARC. The Globocan Project. Available at: globocan.iarc.fr. Accessed on 22 March 2015.Suche in Google Scholar

2. American Cancer Society. Breast cancer. Available at: http://www.cancer.org/cancer/breastcancer/detailedguide/. Accessed 6 April 2015.Suche in Google Scholar

3. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100:57–70.10.1016/S0092-8674(00)81683-9Suche in Google Scholar

4. Ren M, Liu F, Zhu Y, Li Y, Lang R, Fan Y, Gu F, Zhang X, Fu L. Absence of caveolin-1 expression in carcinoma-associated fibroblasts of invasive micropapillary carcinoma of the breast predicts poor patient outcome. Virchows Arch 2014;465:291–8.10.1007/s00428-014-1614-6Suche in Google Scholar PubMed

5. Simpkins SA, Hanby AM, Holliday DL, Speirs V. Clinical and functional significance of loss of caveolin-1 expression in breast cancer-associated fibroblasts. J Pathol 2012;227:490–8.10.1002/path.4034Suche in Google Scholar PubMed

6. Schoppmann SF, Berghoff A, Dinhof C, Jakesz R, Gnant M, Dubsky P, Jesch B, Heinzl H, Birner P. Podoplanin-expressing cancer-associated fibroblasts are associated with poor prognosis in invasive breast cancer. Breast Cancer Res Treat 2012;134:237–44.10.1007/s10549-012-1984-xSuche in Google Scholar PubMed

7. Zhang Y, Cheng S, Zhang M, Zhen L, Pang D, Zhang Q, Li Z. High-infiltration of tumor-associated macrophages predicts unfavorable clinical outcome for node-negative breast cancer. PloS one 2013;8:e76147.10.1371/journal.pone.0076147Suche in Google Scholar PubMed PubMed Central

8. Tang X. Tumor-associated macrophages as potential diagnostic and prognostic biomarkers in breast cancer. Cancer Lett 2013;332:3–10.10.1016/j.canlet.2013.01.024Suche in Google Scholar PubMed

9. Medrek C, Ponten F, Jirstrom K, Leandersson K. The presence of tumor associated macrophages in tumor stroma as a prognostic marker for breast cancer patients. BMC Cancer 2012;12:306.10.1186/1471-2407-12-306Suche in Google Scholar PubMed PubMed Central

10. Rathore AS, Goel MM, Makker A, Kumar S, Srivastava AN. Is the tumor infiltrating natural killer cell (NK-TILs) count in infiltrating ductal carcinoma of breast prognostically significant? Asian Pac J Cancer Prev 2014;15:3757–61.10.7314/APJCP.2014.15.8.3757Suche in Google Scholar

11. Ibrahim EM, Al-Foheidi ME, Al-Mansour MM, Kazkaz GA. The prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancer: a meta-analysis. Breast Cancer Res Treat 2014;148:467–76.10.1007/s10549-014-3185-2Suche in Google Scholar PubMed

12. Adams S, Gray RJ, Demaria S, Goldstein L, Perez EA, Shulman LN, Martino S, Wang M, Jones VE, Saphner TJ, Wolff AC, Wood WC, Davidson NE, Sledge GW, Sparano JA, Badve SS. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin Oncol 2014;32:2959–66.10.1200/JCO.2013.55.0491Suche in Google Scholar PubMed PubMed Central

13. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, Mullany EC, Biryukov S, Abbafati C, Abera SF, Abraham JP, Abu-Rmeileh NM, Achoki T, AlBuhairan FS, Alemu ZA, Alfonso R, Ali MK, Ali R, Guzman NA, Ammar W, Anwari P, Banerjee A, Barquera S, Basu S, Bennett DA, Bhutta Z, Blore J, Cabral N, Nonato IC, Chang JC, Chowdhury R, Courville KJ, Criqui MH, Cundiff DK, Dabhadkar KC, Dandona L, Davis A, Dayama A, Dharmaratne SD, Ding EL, Durrani AM, Esteghamati A, Farzadfar F, Fay DF, Feigin VL, Flaxman A, Forouzanfar MH, Goto A, Green MA, Gupta R, Hafezi-Nejad N, Hankey GJ, Harewood HC, Havmoeller R, Hay S, Hernandez L, Husseini A, Idrisov BT, Ikeda N, Islami F, Jahangir E, Jassal SK, Jee SH, Jeffreys M, Jonas JB, Kabagambe EK, Khalifa SE, Kengne AP, Khader YS, Khang YH, Kim D, Kimokoti RW, Kinge JM, Kokubo Y, Kosen S, Kwan G, Lai T, Leinsalu M, Li Y, Liang X, Liu S, Logroscino G, Lotufo PA, Lu Y, Ma J, Mainoo NK, Mensah GA, Merriman TR, Mokdad AH, Moschandreas J, Naghavi M, Naheed A, Nand D, Narayan KM, Nelson EL, Neuhouser ML, Nisar MI, Ohkubo T, Oti SO, Pedroza A, Prabhakaran D, Roy N, Sampson U, Seo H, Sepanlou SG, Shibuya K, Shiri R, Shiue I, Singh GM, Singh JA, Skirbekk V, Stapelberg NJ, Sturua L, Sykes BL, Tobias M, Tran BX, Trasande L, Toyoshima H, van de Vijver S, Vasankari TJ, Veerman JL, Velasquez-Melendez G, Vlassov VV, Vollset SE, Vos T, Wang C, Wang X, Weiderpass E, Werdecker A, Wright JL, Yang YC, Yatsuya H, Yoon J, Yoon SJ, Zhao Y, Zhou M, Zhu S, Lopez AD, Murray CJ, Gakidou E. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014;384:766–81.10.1016/S0140-6736(14)60460-8Suche in Google Scholar

14. Jain R, Strickler HD, Fine E, Sparano JA. Clinical studies examining the impact of obesity on breast cancer risk and prognosis. J Mammary Gland Biol Neoplasia 2013;18:257–66.10.1007/s10911-013-9307-3Suche in Google Scholar

15. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 2004;89:2548–56.10.1210/jc.2004-0395Suche in Google Scholar

16. Ahima RS, Flier JS. Adipose tissue as an endocrine organ. Trends Endocrinol Metab 2000;11:327–32.10.1016/S1043-2760(00)00301-5Suche in Google Scholar

17. Scherer PE. Adipose tissue: from lipid storage compartment to endocrine organ. Diabetes 2006;55:1537–45.10.2337/db06-0263Suche in Google Scholar PubMed

18. Park A, Kim WK, Bae KH. Distinction of white, beige and brown adipocytes derived from mesenchymal stem cells. World J Stem Cells 2014;6:33–42.10.4252/wjsc.v6.i1.33Suche in Google Scholar PubMed PubMed Central

19. Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, Khandekar M, Virtanen KA, Nuutila P, Schaart G, Huang K, Tu H, van Marken Lichtenbelt WD, Hoeks J, Enerback S, Schrauwen P, Spiegelman BM. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 2012;150:366–76.10.1016/j.cell.2012.05.016Suche in Google Scholar PubMed PubMed Central

20. Timmons JA, Wennmalm K, Larsson O, Walden TB, Lassmann T, Petrovic N, Hamilton DL, Gimeno RE, Wahlestedt C, Baar K, Nedergaard J, Cannon B. Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proc Natl Acad Sci USA 2007;104:4401–6.10.1073/pnas.0610615104Suche in Google Scholar PubMed PubMed Central

21. Wu J, Cohen P, Spiegelman BM. Adaptive thermogenesis in adipocytes: is beige the new brown? Genes Dev 2013;27:234–50.10.1101/gad.211649.112Suche in Google Scholar PubMed PubMed Central

22. Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 2007;293:E444–52.10.1152/ajpendo.00691.2006Suche in Google Scholar PubMed

23. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003;112:1796–808.10.1172/JCI200319246Suche in Google Scholar

24. Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O, Blomqvist L, Hoffstedt J, Naslund E, Britton T, Concha H, Hassan M, Ryden M, Frisen J, Arner P. Dynamics of fat cell turnover in humans. Nature 2008;453:783–7.10.1038/nature06902Suche in Google Scholar

25. Proenca AR, Sertie RA, Oliveira AC, Campana AB, Caminhotto RO, Chimin P, Lima FB. New concepts in white adipose tissue physiology. Braz J Med Biol Res 2014;47:192–205.10.1590/1414-431X20132911Suche in Google Scholar

26. Lee YH, Jung YS, Choi D. Recent advance in brown adipose physiology and its therapeutic potential. Exp Mol Med 2014; 46:e78.10.1038/emm.2013.163Suche in Google Scholar

27. Nedergaard J, Golozoubova V, Matthias A, Asadi A, Jacobsson A, Cannon B. UCP1: the only protein able to mediate adaptive non-shivering thermogenesis and metabolic inefficiency. Biochim Biophys Acta 2001;1504:82–106.10.1016/S0005-2728(00)00247-4Suche in Google Scholar

28. Ricquier D. Uncoupling protein 1 of brown adipocytes, the only uncoupler: a historical perspective. Front Endocrinol 2011;2:85.10.3389/fendo.2011.00085Suche in Google Scholar PubMed PubMed Central

29. Nedergaard J, Cannon B. A polar development. The Runnstrom tradition in Swedish developmental biology. Int J Dev Biol 1995;39:687–96.Suche in Google Scholar

30. Obregon MJ. Adipose tissues and thyroid hormones. Front Physiol 2014;5:479.10.3389/fphys.2014.00479Suche in Google Scholar PubMed PubMed Central

31. Sugimoto S, Nakajima H, Kodo K, Mori J, Matsuo K, Kosaka K, Aoi W, Yoshimoto K, Ikegaya H, Hosoi H. Miglitol increases energy expenditure by upregulating uncoupling protein 1 of brown adipose tissue and reduces obesity in dietary-induced obese mice. Nutr Metab 2014;11:14.10.1186/1743-7075-11-14Suche in Google Scholar PubMed PubMed Central

32. Boon MR, van den Berg SA, Wang Y, van den Bossche J, Karkampouna S, Bauwens M, De Saint-Hubert M, van der Horst G, Vukicevic S, de Winther MP, Havekes LM, Jukema JW, Tamsma JT, van der Pluijm G, van Dijk KW, Rensen PC. BMP7 activates brown adipose tissue and reduces diet-induced obesity only at subthermoneutrality. PloS One 2013;8:e74083.10.1371/journal.pone.0074083Suche in Google Scholar PubMed PubMed Central

33. Garcia B, Obregon MJ. Growth factor regulation of uncoupling protein-1 mRNA expression in brown adipocytes. Am J Physiol Cell Physiol 2002;282:C105–12.10.1152/ajpcell.01396.2000Suche in Google Scholar PubMed

34. Siiteri PK. Adipose tissue as a source of hormones. Am J Clin Nutr 1987;45(Suppl):277–82.10.1093/ajcn/45.1.277Suche in Google Scholar PubMed

35. Quinkler M, Sinha B, Tomlinson JW, Bujalska IJ, Stewart PM, Arlt W. Androgen generation in adipose tissue in women with simple obesity – a site-specific role for 17beta-hydroxysteroid dehydrogenase type 5. J Endocrinol 2004;183:331–42.10.1677/joe.1.05762Suche in Google Scholar PubMed

36. Labrie F, Belanger A, Cusan L, Gomez JL, Candas B. Marked decline in serum concentrations of adrenal C19 sex steroid precursors and conjugated androgen metabolites during aging. J Clin Endocrinol Metab 1997;82:2396–402.10.1210/jcem.82.8.4160Suche in Google Scholar PubMed

37. Nelson LR, Bulun SE. Estrogen production and action. J Am Acad Dermatol 2001;45(Suppl):S116–24.10.1067/mjd.2001.117432Suche in Google Scholar PubMed

38. Simpson ER. Role of aromatase in sex steroid action. J Mol Endocrinol 2000;25:149–56.10.1677/jme.0.0250149Suche in Google Scholar PubMed

39. Brennan AM, Mantzoros CS. Drug insight: the role of leptin in human physiology and pathophysiology – emerging clinical applications. Nat Clin Pract Endocrinol Metab 2006;2:318–27.10.1038/ncpendmet0196Suche in Google Scholar PubMed

40. Diez JJ, Iglesias P. The role of the novel adipocyte-derived hormone adiponectin in human disease. Eur J Endocrinol 2003;148:293–300.10.1530/eje.0.1480293Suche in Google Scholar

41. van der Veer E, Nong Z, O’Neil C, Urquhart B, Freeman D, Pickering JG. Pre-B-cell colony-enhancing factor regulates NAD+-dependent protein deacetylase activity and promotes vascular smooth muscle cell maturation. Circ Res 2005;97:25–34.10.1161/01.RES.0000173298.38808.27Suche in Google Scholar PubMed

42. Fukuhara A, Matsuda M, Nishizawa M, Segawa K, Tanaka M, Kishimoto K, Matsuki Y, Murakami M, Ichisaka T, Murakami H, Watanabe E, Takagi T, Akiyoshi M, Ohtsubo T, Kihara S, Yamashita S, Makishima M, Funahashi T, Yamanaka S, Hiramatsu R, Matsuzawa Y, Shimomura I. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science 2005;307:426–30.10.1126/science.1097243Suche in Google Scholar PubMed

43. Rehrer CW, Karimpour-Fard A, Hernandez TL, Law CK, Stob NR, Hunter LE, Eckel RH. Regional differences in subcutaneous adipose tissue gene expression. Obesity 2012;20:2168–73.10.1038/oby.2012.117Suche in Google Scholar PubMed PubMed Central

44. Ashwell M. Obesity in men and women. Int J Obes Relat Metab Disord 1994;18(Suppl 1):S1–7.Suche in Google Scholar

45. Gil A, Olza J, Gil-Campos M, Gomez-Llorente C, Aguilera CM. Is adipose tissue metabolically different at different sites? Int J Pediatr Obes 2011;6(Suppl 1):13–20.10.3109/17477166.2011.604326Suche in Google Scholar PubMed

46. Lefebvre AM, Laville M, Vega N, Riou JP, van Gaal L, Auwerx J, Vidal H. Depot-specific differences in adipose tissue gene expression in lean and obese subjects. Diabetes 1998;47:98–103.10.2337/diab.47.1.98Suche in Google Scholar PubMed

47. Modesitt SC, Hsu JY, Chowbina SR, Lawrence RT, Hoehn KL. Not all fat is equal: differential gene expression and potential therapeutic targets in subcutaneous adipose, visceral adipose, and endometrium of obese women with and without endometrial cancer. Int J Gynecol Cancer 2012;22:732–41.10.1097/IGC.0b013e3182510496Suche in Google Scholar PubMed

48. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 2012;21:309–22.10.1016/j.ccr.2012.02.022Suche in Google Scholar PubMed

49. Martinez-Outschoorn UE, Pestell RG, Howell A, Tykocinski ML, Nagajyothi F, Machado FS, Tanowitz HB, Sotgia F, Lisanti MP. Energy transfer in “parasitic” cancer metabolism: mitochondria are the powerhouse and Achilles’ heel of tumor cells. Cell Cycle 2011;10:4208–16.10.4161/cc.10.24.18487Suche in Google Scholar PubMed PubMed Central

50. Sotgia F, Martinez-Outschoorn UE, Pavlides S, Howell A, Pestell RG, Lisanti MP. Understanding the Warburg effect and the prognostic value of stromal caveolin-1 as a marker of a lethal tumor microenvironment. Breast Cancer Res 2011;13:213.10.1186/bcr2892Suche in Google Scholar PubMed PubMed Central

51. Sotgia F, Martinez-Outschoorn UE, Howell A, Pestell RG, Pavlides S, Lisanti MP. Caveolin-1 and cancer metabolism in the tumor microenvironment: markers, models, and mechanisms. Annu Rev Pathol 2012;7:423–67.10.1146/annurev-pathol-011811-120856Suche in Google Scholar PubMed

52. Wu KN, Queenan M, Brody JR, Potoczek M, Sotgia F, Lisanti MP, Witkiewicz AK. Loss of stromal caveolin-1 expression in malignant melanoma metastases predicts poor survival. Cell Cycle 2011;10:4250–5.10.4161/cc.10.24.18551Suche in Google Scholar PubMed

53. Witkiewicz AK, Whitaker-Menezes D, Dasgupta A, Philp NJ, Lin Z, Gandara R, Sneddon S, Martinez-Outschoorn UE, Sotgia F, Lisanti MP. Using the “reverse Warburg effect” to identify high-risk breast cancer patients: stromal MCT4 predicts poor clinical outcome in triple-negative breast cancers. Cell Cycle 2012;11:1108–17.10.4161/cc.11.6.19530Suche in Google Scholar PubMed PubMed Central

54. Rattigan YI, Patel BB, Ackerstaff E, Sukenick G, Koutcher JA, Glod JW, Banerjee D. Lactate is a mediator of metabolic cooperation between stromal carcinoma associated fibroblasts and glycolytic tumor cells in the tumor microenvironment. Exp Cell Res 2012;318:326–35.10.1016/j.yexcr.2011.11.014Suche in Google Scholar PubMed PubMed Central

55. Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, Romero IL, Carey MS, Mills GB, Hotamisligil GS, Yamada SD, Peter ME, Gwin K, Lengyel E. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med 2011;17:1498–503.10.1038/nm.2492Suche in Google Scholar PubMed PubMed Central

56. Dirat B, Bochet L, Dabek M, Daviaud D, Dauvillier S, Majed B, Wang YY, Meulle A, Salles B, Le Gonidec S, Garrido I, Escourrou G, Valet P, Muller C. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res 2011;71:2455–65.10.1158/0008-5472.CAN-10-3323Suche in Google Scholar

57. Pollak M. Potential applications for biguanides in oncology. J Clin Invest 2013;123:3693–700.10.1172/JCI67232Suche in Google Scholar

58. Martinez-Outschoorn UE, Lin Z, Ko YH, Goldberg AF, Flomenberg N, Wang C, Pavlides S, Pestell RG, Howell A, Sotgia F, Lisanti MP. Understanding the metabolic basis of drug resistance: therapeutic induction of the Warburg effect kills cancer cells. Cell Cycle 2011;10:2521–28.10.4161/cc.10.15.16584Suche in Google Scholar

59. Park S, Koo J, Park HS, Kim JH, Choi SY, Lee JH, Park BW, Lee KS. Expression of androgen receptors in primary breast cancer. Ann Oncol 2010;21:488–92.10.1093/annonc/mdp510Suche in Google Scholar

60. Key T, Appleby P, Barnes I, Reeves G, Endogenous H, Breast Cancer Collaborative G. Endogenous sex hormones and breast cancer in postmenopausal women: reanalysis of nine prospective studies. J Natl Cancer Inst 2002;94:606–16.10.1093/jnci/94.8.606Suche in Google Scholar

61. Schernhammer ES, Sperati F, Razavi P, Agnoli C, Sieri S, Berrino F, Krogh V, Abbagnato C, Grioni S, Blandino G, Schunemann HJ, Muti P. Endogenous sex steroids in premenopausal women and risk of breast cancer: the ORDET cohort. Breast Cancer Res 2013;15:R46.10.1186/bcr3438Suche in Google Scholar

62. Endogenous H, Breast Cancer Collaborative G, Key TJ, Appleby PN, Reeves GK, Travis RC, Alberg AJ, Barricarte A, Berrino F, Krogh V, Sieri S, Brinton LA, Dorgan JF, Dossus L, Dowsett M, Eliassen AH, Fortner RT, Hankinson SE, Helzlsouer KJ, Hoffman-Bolton J, Comstock GW, Kaaks R, Kahle LL, Muti P, Overvad K, Peeters PH, Riboli E, Rinaldi S, Rollison DE, Stanczyk FZ, Trichopoulos D, Tworoger SS, Vineis P. Sex hormones and risk of breast cancer in premenopausal women: a collaborative reanalysis of individual participant data from seven prospective studies. Lancet Oncol 2013;14:1009–19.10.1016/S1470-2045(13)70301-2Suche in Google Scholar

63. Brisken C. Progesterone signalling in breast cancer: a neglected hormone coming into the limelight. Nat Rev Cancer 2013;13:385–96.10.1038/nrc3518Suche in Google Scholar PubMed

64. Muti P. Is progesterone a neutral or protective factor for breast cancer? Nat Rev Cancer 2014;14:146.10.1038/nrc3518-c1Suche in Google Scholar PubMed

65. Dimitrakakis C, Bondy C. Androgens and the breast. Breast Cancer Res 2009;11:212.10.1186/bcr2413Suche in Google Scholar PubMed PubMed Central

66. Secreto G, Zumoff B. Role of androgen excess in the development of estrogen receptor-positive and estrogen receptor-negative breast cancer. Anticancer Res 2012;32:3223–8.Suche in Google Scholar

67. Simpson ER. Sources of estrogen and their importance. J Steroid Biochem Mol Biol 2003;86:225–30.10.1016/S0960-0760(03)00360-1Suche in Google Scholar

68. Fehér T, Bodrogi L, Vallent K, Ribai Z. Role of human adipose tissue in the production and metabolism of steroid hormones. Endokrinologie 1982;80:173–80.Suche in Google Scholar

69. Bulun SE, Simpson ER. Breast cancer and expression of aromatase in breast adipose tissue. Trends Endocrinol Metab 1994;5:113–20.10.1016/1043-2760(94)90092-2Suche in Google Scholar

70. Sasano H, Miki Y, Nagasaki S, Suzuki T. In situ estrogen production and its regulation in human breast carcinoma: from endocrinology to intracrinology. Pathol Int 2009;59:777–89.10.1111/j.1440-1827.2009.02444.xSuche in Google Scholar PubMed

71. Savolainen-Peltonen H, Vihma V, Leidenius M, Wang F, Turpeinen U, Hamalainen E, Tikkanen MJ, Mikkola TS. Breast adipose tissue estrogen metabolism in postmenopausal women with or without breast cancer. J Clin Endocrinol Metab 2014;99:E2661–7.10.1210/jc.2014-2550Suche in Google Scholar PubMed

72. Vona-Davis L, Rose DP. Adipokines as endocrine, paracrine, and autocrine factors in breast cancer risk and progression. Endocr Relat Cancer 2007;14:189–206.10.1677/ERC-06-0068Suche in Google Scholar PubMed

73. Nalabolu MR, Palasamudram K, Jamil K. Adiponectin and leptin molecular actions and clinical significance in breast cancer. Int J Hematol-Oncol Stem Cell Res 2014;8:31–40.Suche in Google Scholar

74. Dalamaga M. Obesity, insulin resistance, adipocytokines and breast cancer: new biomarkers and attractive therapeutic targets. World J Exp Med 2013;3:34–42.10.5493/wjem.v3.i3.34Suche in Google Scholar PubMed PubMed Central

75. Park HJ, Kim SR, Kim SS, Wee HJ, Bae MK, Ryu MH, Bae SK. Visfatin promotes cell and tumor growth by upregulating Notch1 in breast cancer. Oncotarget 2014;5:5087–99.10.18632/oncotarget.2086Suche in Google Scholar PubMed PubMed Central

76. Soncini D, Caffa I, Zoppoli G, Cea M, Cagnetta A, Passalacqua M, Mastracci L, Boero S, Montecucco F, Sociali G, Lasiglie D, Damonte P, Grozio A, Mannino E, Poggi A, D’Agostino VG, Monacelli F, Provenzani A, Odetti P, Ballestrero A, Bruzzone S, Nencioni A. Nicotinamide phosphoribosyltransferase promotes epithelial-to-mesenchymal transition as a soluble factor independent of its enzymatic activity. J Biol Chem 2014;289:34189–204.10.1074/jbc.M114.594721Suche in Google Scholar PubMed PubMed Central

77. Santidrian AF, LeBoeuf SE, Wold ED, Ritland M, Forsyth JS, Felding BH. Nicotinamide phosphoribosyltransferase can affect metastatic activity and cell adhesive functions by regulating integrins in breast cancer. DNA Repair 2014;23:79–87.10.1016/j.dnarep.2014.08.006Suche in Google Scholar PubMed PubMed Central

78. Dalamaga M, Karmaniolas K, Papadavid E, Pelekanos N, Sotiropoulos G, Lekka A. Elevated serum visfatin/nicotinamide phosphoribosyl-transferase levels are associated with risk of postmenopausal breast cancer independently from adiponectin, leptin, and anthropometric and metabolic parameters. Menopause 2011;18:1198–204.10.1097/gme.0b013e31821e21f5Suche in Google Scholar PubMed

79. Park J, Scherer PE. Adipocyte-derived endotrophin promotes malignant tumor progression. J Clin Invest 2012;122:4243–56.10.1172/JCI63930Suche in Google Scholar

80. Kristiansen OP, Mandrup-Poulsen T. Interleukin-6 and diabetes: the good, the bad, or the indifferent? Diabetes 2005;54 (Suppl 2):S114–24.10.2337/diabetes.54.suppl_2.S114Suche in Google Scholar

81. Nishimoto N. Interleukin-6 in rheumatoid arthritis. Curr Opin Rheumatol 2006;18:277–81.10.1097/01.bor.0000218949.19860.d1Suche in Google Scholar

82. Rattazzi M, Puato M, Faggin E, Bertipaglia B, Zambon A, Pauletto P. C-reactive protein and interleukin-6 in vascular disease: culprits or passive bystanders? J Hypertens 2003;21:1787–803.10.1097/00004872-200310000-00002Suche in Google Scholar

83. Smith PC, Hobisch A, Lin DL, Culig Z, Keller ET. Interleukin-6 and prostate cancer progression. Cytokine Growth Factor Rev 2001;12:33–40.10.1016/S1359-6101(00)00021-6Suche in Google Scholar

84. Giannitrapani L, Soresi M, Balasus D, Licata A, Montalto G. Genetic association of interleukin-6 polymorphism (−174 G/C) with chronic liver diseases and hepatocellular carcinoma. World J Gastroenterol 2013;19:2449–55.10.3748/wjg.v19.i16.2449Suche in Google Scholar PubMed PubMed Central

85. Dethlefsen C, Hojfeldt G, Hojman P. The role of intratumoral and systemic IL-6 in breast cancer. Breast Cancer Res Treat 2013;138:657–64.10.1007/s10549-013-2488-zSuche in Google Scholar PubMed

86. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006;444:840–6.10.1038/nature05482Suche in Google Scholar PubMed

87. Taniguchi K, Karin M. IL-6 and related cytokines as the critical lynchpins between inflammation and cancer. Semin Immunol 2014;26:54–74.10.1016/j.smim.2014.01.001Suche in Google Scholar PubMed

88. Ghosh S, Ashcraft K. An IL-6 link between obesity and cancer. Front Biosci 2013;5:461–78.10.2741/E628Suche in Google Scholar

89. Yamaguchi J, Ohtani H, Nakamura K, Shimokawa I, Kanematsu T. Prognostic impact of marginal adipose tissue invasion in ductal carcinoma of the breast. Am J Clin Pathol 2008;130:382–8.10.1309/MX6KKA1UNJ1YG8VNSuche in Google Scholar PubMed

90. Fiedler S, Bravin A, Keyrilainen J, Fernandez M, Suortti P, Thomlinson W, Tenhunen M, Virkkunen P, Karjalainen-Lindsberg M. Imaging lobular breast carcinoma: comparison of synchrotron radiation DEI-CT technique with clinical CT, mammography and histology. Phys Med Biol 2004;49:175–88.10.1088/0031-9155/49/2/001Suche in Google Scholar PubMed

91. Karousou E, D’Angelo ML, Kouvidi K, Vigetti D, Viola M, Nikitovic D, De Luca G, Passi A. Collagen VI and hyaluronan: the common role in breast cancer. BioMed Res Int 2014;2014:606458.10.1155/2014/606458Suche in Google Scholar PubMed PubMed Central

92. Stivarou T, Patsavoudi E. Extracellular molecules involved in cancer cell invasion. Cancers 2015;7:238–65.10.3390/cancers7010238Suche in Google Scholar PubMed PubMed Central

93. Gritsenko PG, Ilina O, Friedl P. Interstitial guidance of cancer invasion. J Pathol 2012;226:185–99.10.1002/path.3031Suche in Google Scholar PubMed

94. Van Gaal LF, Mertens IL, De Block CE. Mechanisms linking obesity with cardiovascular disease. Nature 2006;444:875–80.10.1038/nature05487Suche in Google Scholar PubMed

95. de Sousa AG, Cercato C, Mancini MC, Halpern A. Obesity and obstructive sleep apnea-hypopnea syndrome. Obes Rev 2008;9:340–54.10.1111/j.1467-789X.2008.00478.xSuche in Google Scholar PubMed

96. LeRoith D, Novosyadlyy R, Gallagher EJ, Lann D, Vijayakumar A, Yakar S. Obesity and type 2 diabetes are associated with an increased risk of developing cancer and a worse prognosis; epidemiological and mechanistic evidence. Exp Clin Endocrinol Diabetes 2008;116(Suppl 1):S4–6.10.1055/s-2008-1081488Suche in Google Scholar PubMed

97. Bluher M. Adipose tissue dysfunction in obesity. Exp Clin Endocrinol Diabetes 2009;117:241–50.10.1055/s-0029-1192044Suche in Google Scholar PubMed

98. Arner E, Westermark PO, Spalding KL, Britton T, Ryden M, Frisen J, Bernard S, Arner P. Adipocyte turnover: relevance to human adipose tissue morphology. Diabetes 2010;59:105–9.10.2337/db09-0942Suche in Google Scholar PubMed PubMed Central

99. Tchoukalova YD, Votruba SB, Tchkonia T, Giorgadze N, Kirkland JL, Jensen MD. Regional differences in cellular mechanisms of adipose tissue gain with overfeeding. Proc Natl Acad Sci USA 2010;107:18226–31.10.1073/pnas.1005259107Suche in Google Scholar

100. Sun X, Casbas-Hernandez P, Bigelow C, Makowski L, Joseph Jerry D, Smith Schneider S, Troester MA. Normal breast tissue of obese women is enriched for macrophage markers and macrophage-associated gene expression. Breast Cancer Res Treat 2012;131:1003–12.10.1007/s10549-011-1789-3Suche in Google Scholar

101. Morris PG, Hudis CA, Giri D, Morrow M, Falcone DJ, Zhou XK, Du B, Brogi E, Crawford CB, Kopelovich L, Subbaramaiah K, Dannenberg AJ. Inflammation and increased aromatase expression occur in the breast tissue of obese women with breast cancer. Cancer Prev Res 2011;4:1021–9.10.1158/1940-6207.CAPR-11-0110Suche in Google Scholar

102. Kissebah AH, Alfarsi S, Adams PW. Integrated regulation of very low density lipoprotein triglyceride and apolipoprotein-B kinetics in man: normolipemic subjects, familial hypertriglyceridemia and familial combined hyperlipidemia. Metab Clin Exp 1981;30:856–68.10.1016/0026-0495(81)90064-0Suche in Google Scholar

103. Jensen MD. Role of body fat distribution and the metabolic complications of obesity. J Clin Endocrinol Metab 2008;93(Suppl 1):S57–63.10.1210/jc.2008-1585Suche in Google Scholar PubMed PubMed Central

104. Karpe F, Pinnick KE. Biology of upper-body and lower-body adipose tissue – link to whole-body phenotypes. Nat Rev Endocrinol 2015;11:90–100.10.1038/nrendo.2014.185Suche in Google Scholar PubMed

105. Skurk T, Alberti-Huber C, Herder C, Hauner H. Relationship between adipocyte size and adipokine expression and secretion. J Clin Endocrinol Metab 2007;92:1023–33.10.1210/jc.2006-1055Suche in Google Scholar PubMed

106. Curat CA, Wegner V, Sengenes C, Miranville A, Tonus C, Busse R, Bouloumie A. Macrophages in human visceral adipose tissue: increased accumulation in obesity and a source of resistin and visfatin. Diabetologia 2006;49:744–7.10.1007/s00125-006-0173-zSuche in Google Scholar PubMed

107. Fain JN, Madan AK, Hiler ML, Cheema P, Bahouth SW. Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology 2004;145:2273–82.10.1210/en.2003-1336Suche in Google Scholar PubMed

108. Lapeire L, Hendrix A, Lambein K, Van Bockstal M, Braems G, Van Den Broecke R, Limame R, Mestdagh P, Vandesompele J, Vanhove C, Maynard D, Lehuede C, Muller C, Valet P, Gespach CP, Bracke M, Cocquyt V, Denys H, De Wever O. Cancer-associated adipose tissue promotes breast cancer progression by paracrine oncostatin M and Jak/STAT3 signaling. Cancer Res 2014;74:6806–19.10.1158/0008-5472.CAN-14-0160Suche in Google Scholar PubMed

109. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 2007;117:175–84.10.1172/JCI29881Suche in Google Scholar PubMed PubMed Central

110. Zeyda M, Farmer D, Todoric J, Aszmann O, Speiser M, Gyori G, Zlabinger GJ, Stulnig TM. Human adipose tissue macrophages are of an anti-inflammatory phenotype but capable of excessive pro-inflammatory mediator production. Int J Obes 2007;31:1420–8.10.1038/sj.ijo.0803632Suche in Google Scholar PubMed

111. Chinetti-Gbaguidi G, Staels B. Macrophage polarization in metabolic disorders: functions and regulation. Curr Opin Lipidol 2011;22:365–72.10.1097/MOL.0b013e32834a77b4Suche in Google Scholar PubMed PubMed Central

112. Exley MA, Hand L, O’Shea D, Lynch L. Interplay between the immune system and adipose tissue in obesity. J Endocrinol 2014;223:R41–8.10.1530/JOE-13-0516Suche in Google Scholar PubMed

113. Tateya S, Kim F, Tamori Y. Recent advances in obesity-induced inflammation and insulin resistance. Front Endocrinol 2013;4:93.10.3389/fendo.2013.00093Suche in Google Scholar PubMed PubMed Central

114. Lynch L, O’Shea D, Winter DC, Geoghegan J, Doherty DG, O’Farrelly C. Invariant NKT cells and CD1d(+) cells amass in human omentum and are depleted in patients with cancer and obesity. Eur J Immunol 2009;39:1893–901.10.1002/eji.200939349Suche in Google Scholar PubMed

115. Trellakis S, Rydleuskaya A, Fischer C, Canbay A, Tagay S, Scherag A, Bruderek K, Schuler PJ, Brandau S. Low adiponectin, high levels of apoptosis and increased peripheral blood neutrophil activity in healthy obese subjects. Obes Facts 2012;5:305–18.10.1159/000339452Suche in Google Scholar PubMed

116. Park HS, Park JY, Yu R. Relationship of obesity and visceral adiposity with serum concentrations of CRP, TNF-alpha and IL-6. Diabetes Res Clin Pract 2005;69:29–35.10.1016/j.diabres.2004.11.007Suche in Google Scholar PubMed

117. Bastard JP, Jardel C, Bruckert E, Blondy P, Capeau J, Laville M, Vidal H, Hainque B. Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss. J Clin Endocrinol Metab 2000;85:3338–42.10.1210/jcem.85.9.6839Suche in Google Scholar

118. Kim CS, Park HS, Kawada T, Kim JH, Lim D, Hubbard NE, Kwon BS, Erickson KL, Yu R. Circulating levels of MCP-1 and IL-8 are elevated in human obese subjects and associated with obesity-related parameters. Int J Obes 2006;30:1347–55.10.1038/sj.ijo.0803259Suche in Google Scholar PubMed

119. Chen DC, Chung YF, Yeh YT, Chaung HC, Kuo FC, Fu OY, Chen HY, Hou MF, Yuan SS. Serum adiponectin and leptin levels in Taiwanese breast cancer patients. Cancer Lett 2006;237: 109–14.10.1016/j.canlet.2005.05.047Suche in Google Scholar PubMed

120. Lebrecht A, Grimm C, Lantzsch T, Ludwig E, Hefler L, Ulbrich E, Koelbl H. Monocyte chemoattractant protein-1 serum levels in patients with breast cancer. Tumour Biol 2004;25:14–7.10.1159/000077718Suche in Google Scholar PubMed

121. Zhang GJ, Adachi I. Serum interleukin-6 levels correlate to tumor progression and prognosis in metastatic breast carcinoma. Anticancer Res 1999;19:1427–32.Suche in Google Scholar

122. Papadopoulou E, Tripsianis G, Anagnostopoulos K, Tentes I, Kakolyris S, Galazios G, Sivridis E, Simopoulos K, Kortsaris A. Significance of serum tumor necrosis factor-alpha and its combination with HER-2 codon 655 polymorphism in the diagnosis and prognosis of breast cancer. Int J Biol Mark 2010;25:126–35.10.1177/172460081002500302Suche in Google Scholar

123. Pierce BL, Ballard-Barbash R, Bernstein L, Baumgartner RN, Neuhouser ML, Wener MH, Baumgartner KB, Gilliland FD, Sorensen BE, McTiernan A, Ulrich CM. Elevated biomarkers of inflammation are associated with reduced survival among breast cancer patients. J Clin Oncol 2009;27:3437–44.10.1200/JCO.2008.18.9068Suche in Google Scholar PubMed PubMed Central

124. Gavrila A, Chan JL, Yiannakouris N, Kontogianni M, Miller LC, Orlova C, Mantzoros CS. Serum adiponectin levels are inversely associated with overall and central fat distribution but are not directly regulated by acute fasting or leptin administration in humans: cross-sectional and interventional studies. J Clin Endocrinol Metab 2003;88:4823–31.10.1210/jc.2003-030214Suche in Google Scholar PubMed

125. Mantzoros C, Petridou E, Dessypris N, Chavelas C, Dalamaga M, Alexe DM, Papadiamantis Y, Markopoulos C, Spanos E, Chrousos G, Trichopoulos D. Adiponectin and breast cancer risk. J Clin Endocrinol Metab 2004;89:1102–7.10.1210/jc.2003-031804Suche in Google Scholar PubMed

126. Miyoshi Y, Funahashi T, Kihara S, Taguchi T, Tamaki Y, Matsuzawa Y, Noguchi S. Association of serum adiponectin levels with breast cancer risk. Clin Cancer Res 2003;9:5699–704.Suche in Google Scholar

127. Olefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol 2010;72:219–46.10.1146/annurev-physiol-021909-135846Suche in Google Scholar PubMed

128. Bruning PF, Bonfrer JM, van Noord PA, Hart AA, de Jong-Bakker M, Nooijen WJ. Insulin resistance and breast-cancer risk. Int J Cancer 1992;52:511–6.10.1002/ijc.2910520402Suche in Google Scholar PubMed

129. Onitilo AA, Engel JM, Glurich I, Stankowski RV, Williams GM, Doi SA. Diabetes and cancer I: risk, survival, and implications for screening. Cancer Causes Control 2012;23:967–81.10.1007/s10552-012-9972-3Suche in Google Scholar PubMed PubMed Central

130. Sciacca L, Vigneri R, Tumminia A, Frasca F, Squatrito S, Frittitta L, Vigneri P. Clinical and molecular mechanisms favoring cancer initiation and progression in diabetic patients. Nutr Metab Cardiovasc Dis 2013;23:808–15.10.1016/j.numecd.2013.05.006Suche in Google Scholar PubMed

131. Bays HE, Toth PP, Kris-Etherton PM, Abate N, Aronne LJ, Brown WV, Gonzalez-Campoy JM, Jones SR, Kumar R, La Forge R, Samuel VT. Obesity, adiposity, and dyslipidemia: a consensus statement from the National Lipid Association. J Clin Lipid 2013;7:304–83.10.1016/j.jacl.2013.04.001Suche in Google Scholar PubMed

132. Rodrigues Dos Santos C, Fonseca I, Dias S, Mendes de Almeida JC. Plasma level of LDL-cholesterol at diagnosis is a predictor factor of breast tumor progression. BMC Cancer 2014;14:132.10.1186/1471-2407-14-132Suche in Google Scholar PubMed PubMed Central

133. Agnoli C, Berrino F, Abagnato CA, Muti P, Panico S, Crosignani P, Krogh V. Metabolic syndrome and postmenopausal breast cancer in the ORDET cohort: a nested case-control study. Nutr Metab Cardiovasc Dis 2010;20:41–8.10.1016/j.numecd.2009.02.006Suche in Google Scholar PubMed PubMed Central

134. Kim Y, Park SK, Han W, Kim DH, Hong YC, Ha EH, Ahn SH, Noh DY, Kang D, Yoo KY. Serum high-density lipoprotein cholesterol and breast cancer risk by menopausal status, body mass index, and hormonal receptor in Korea. Cancer Epidemiol Biomarkers Prev 2009;18:508–15.10.1158/1055-9965.EPI-08-0133Suche in Google Scholar PubMed

135. Maiti B, Kundranda MN, Spiro TP, Daw HA. The association of metabolic syndrome with triple-negative breast cancer. Breast Cancer Res Treat 2010;121:479–83.10.1007/s10549-009-0591-ySuche in Google Scholar PubMed

136. Pelton K, Coticchia CM, Curatolo AS, Schaffner CP, Zurakowski D, Solomon KR, Moses MA. Hypercholesterolemia induces angiogenesis and accelerates growth of breast tumors in vivo. Am J Pathol 2014;184:2099–110.10.1016/j.ajpath.2014.03.006Suche in Google Scholar PubMed PubMed Central

137. Key TJ, Appleby PN, Reeves GK, Roddam A, Dorgan JF, Longcope C, Stanczyk FZ, Stephenson HE Jr, Falk RT, Miller R, Schatzkin A, Allen DS, Fentiman IS, Key TJ, Wang DY, Dowsett M, Thomas HV, Hankinson SE, Toniolo P, Akhmedkhanov A, Koenig K, Shore RE, Zeleniuch-Jacquotte A, Berrino F, Muti P, Micheli A, Krogh V, Sieri S, Pala V, Venturelli E, Secreto G, Barrett-Connor E, Laughlin GA, Kabuto M, Akiba S, Stevens RG, Neriishi K, Land CE, Cauley JA, Kuller LH, Cummings SR, Helzlsouer KJ, Alberg AJ, Bush TL, Comstock GW, Gordon GB, Miller SR, Longcope C, Endogenous Hormones Breast Cancer Collaborative Group. Body mass index, serum sex hormones, and breast cancer risk in postmenopausal women. J Natl Cancer Inst 2003;95:1218–26.10.1093/jnci/djg022Suche in Google Scholar PubMed

138. Kaaks R, Rinaldi S, Key TJ, Berrino F, Peeters PH, Biessy C, Dossus L, Lukanova A, Bingham S, Khaw KT, Allen NE, Bueno-de-Mesquita HB, van Gils CH, Grobbee D, Boeing H, Lahmann PH, Nagel G, Chang-Claude J, Clavel-Chapelon F, Fournier A, Thiebaut A, Gonzalez CA, Quiros JR, Tormo MJ, Ardanaz E, Amiano P, Krogh V, Palli D, Panico S, Tumino R, Vineis P, Trichopoulou A, Kalapothaki V, Trichopoulos D, Ferrari P, Norat T, Saracci R, Riboli E. Postmenopausal serum androgens, oestrogens and breast cancer risk: the European prospective investigation into cancer and nutrition. Endocr Relat Cancer 2005;12:1071–82.10.1677/erc.1.01038Suche in Google Scholar PubMed

139. Hsing AW, McLaughlin JK, Cocco P, Co Chien HT, Fraumeni JF Jr. Risk factors for male breast cancer (United States). Cancer Causes Control: CCC 1998;9:269–75.10.1023/A:1008869003012Suche in Google Scholar

140. Casagrande JT, Hanisch R, Pike MC, Ross RK, Brown JB, Henderson BE. A case-control study of male breast cancer. Cancer Res 1988;48:1326–30.Suche in Google Scholar

141. Weiss JR, Moysich KB, Swede H. Epidemiology of male breast cancer. Cancer Epidemiol Biomarkers Prev 2005;14:20–6.10.1158/1055-9965.20.14.1Suche in Google Scholar

142. Peacock SL, White E, Daling JR, Voigt LF, Malone KE. Relation between obesity and breast cancer in young women. Am J Epidemiol 1999;149:339–46.10.1093/oxfordjournals.aje.a009818Suche in Google Scholar PubMed

143. Bloor ID, Symonds ME. Sexual dimorphism in white and brown adipose tissue with obesity and inflammation. Horm Behav 2014;66:95–103.10.1016/j.yhbeh.2014.02.007Suche in Google Scholar PubMed

144. Doyle SL, Donohoe CL, Lysaght J, Reynolds JV. Visceral obesity, metabolic syndrome, insulin resistance and cancer. Proc Nutr Soc 2012;71:181–9.10.1017/S002966511100320XSuche in Google Scholar

145. Sato H, Ishikawa M, Sugai H, Funaki A, Kimura Y, Sumitomo M, Ueno K. Sex hormones influence expression and function of peroxisome proliferator-activated receptor gamma in adipocytes: pathophysiological aspects. Horm Mol Biol Clin Invest 2014;20:51–61.10.1515/hmbci-2014-0026Suche in Google Scholar

146. Strong AL, Strong TA, Rhodes LV, Semon JA, Zhang X, Shi Z, Zhang S, Gimble JM, Burow ME, Bunnell BA. Obesity associated alterations in the biology of adipose stem cells mediate enhanced tumorigenesis by estrogen dependent pathways. Breast Cancer Res 2013;15:R102.10.1186/bcr3569Suche in Google Scholar

147. Kim JH, Cho HT, Kim YJ. The role of estrogen in adipose tissue metabolism: insights into glucose homeostasis regulation. Endocr J 2014;61:1055–67.10.1507/endocrj.EJ14-0262Suche in Google Scholar

148. Dowsett M, Folkerd E. Reduced progesterone levels explain the reduced risk of breast cancer in obese premenopausal women: a new hypothesis. Breast Cancer Res Treat 2015;149:1–4.10.1007/s10549-014-3211-4Suche in Google Scholar

149. Das SK, Eder S, Schauer S, Diwoky C, Temmel H, Guertl B, Gorkiewicz G, Tamilarasan KP, Kumari P, Trauner M, Zimmermann R, Vesely P, Haemmerle G, Zechner R, Hoefler G. Adipose triglyceride lipase contributes to cancer-associated cachexia. Science 2011;333:233–8.10.1126/science.1198973Suche in Google Scholar

150. Das SK, Hoefler G. The role of triglyceride lipases in cancer associated cachexia. Trends Mol Med 2013;19:292–301.10.1016/j.molmed.2013.02.006Suche in Google Scholar

151. Purohit A, Newman SP, Reed MJ. The role of cytokines in regulating estrogen synthesis: implications for the etiology of breast cancer. Breast Cancer Res 2002;4:65–9.10.1186/bcr425Suche in Google Scholar

152. Miller WR. Aromatase and the breast: regulation and clinical aspects. Maturitas 2006;54:335–41.10.1016/j.maturitas.2006.04.020Suche in Google Scholar

153. Litton JK, Gonzalez-Angulo AM, Warneke CL, Buzdar AU, Kau SW, Bondy M, Mahabir S, Hortobagyi GN, Brewster AM. Relationship between obesity and pathologic response to neoadjuvant chemotherapy among women with operable breast cancer. J Clin Oncol 2008;26:4072–7.10.1200/JCO.2007.14.4527Suche in Google Scholar

154. Misra M, Klibanski A. Endocrine consequences of anorexia nervosa. Lancet Diabetes Endocrinol 2014;2:581–92.10.1016/S2213-8587(13)70180-3Suche in Google Scholar

155. Falagas ME, Athanasoulia AP, Peppas G, Karageorgopoulos DE. Effect of body mass index on the outcome of infections: a systematic review. Obes Rev 2009;10:280–9.10.1111/j.1467-789X.2008.00546.xSuche in Google Scholar PubMed

156. Gaesser GA. Thinness and weight loss: beneficial or detrimental to longevity? Med Sci Sports Exerc 1999;31:1118–28.10.1097/00005768-199908000-00007Suche in Google Scholar PubMed

157. Thomson CA, McCullough ML, Wertheim BC, Chlebowski RT, Martinez ME, Stefanick ML, Rohan TE, Manson JE, Tindle HA, Ockene J, Vitolins MZ, Wactawski-Wende J, Sarto GE, Lane DS, Neuhouser ML. Nutrition and physical activity cancer prevention guidelines, cancer risk, and mortality in the Women’s Health Initiative. Cancer Prev Res 2014;7:42–53.10.1158/1940-6207.CAPR-13-0258Suche in Google Scholar PubMed PubMed Central

158. Schmidt ME, Chang-Claude J, Vrieling A, Seibold P, Heinz J, Obi N, Flesch-Janys D, Steindorf K. Association of pre-diagnosis physical activity with recurrence and mortality among women with breast cancer. Int J Cancer 2013;133: 1431–440.10.1002/ijc.28130Suche in Google Scholar PubMed

159. Ballard-Barbash R, Friedenreich CM, Courneya KS, Siddiqi SM, McTiernan A, Alfano CM. Physical activity, biomarkers, and disease outcomes in cancer survivors: a systematic review. J Natl Cancer Inst 2012;104:815–40.10.1093/jnci/djs207Suche in Google Scholar PubMed PubMed Central

160. Carmichael AR. Physical activity as an adjuvant treatment for breast cancer; is it time for guidelines? Eur J Surg Oncol 2014;40:137–9.10.1016/j.ejso.2013.07.097Suche in Google Scholar PubMed

161. Berrino F. Life style prevention of cancer recurrence: the yin and the yang. Cancer Treat Res 2014;159:341–51.10.1007/978-3-642-38007-5_20Suche in Google Scholar PubMed

162. Colditz GA, Bohlke K, Berkey CS. Breast cancer risk accumulation starts early: prevention must also. Breast Cancer Res Treat 2014;145:567–79.10.1007/s10549-014-2993-8Suche in Google Scholar PubMed PubMed Central

163. Peeters PJ, Bazelier MT, Vestergaard P, Leufkens HG, Schmidt MK, de Vries F, De Bruin ML. Use of metformin and survival of diabetic women with breast cancer. Curr Drug Saf 2013;8:357–63.10.2174/15680266113136660069Suche in Google Scholar PubMed PubMed Central

164. Aksoy S, Sendur MA, Altundag K. Demographic and clinico-pathological characteristics in patients with invasive breast cancer receiving metformin. Med Oncol 2013;30:590.10.1007/s12032-013-0590-zSuche in Google Scholar PubMed

165. Zhang P, Li H, Tan X, Chen L, Wang S. Association of metformin use with cancer incidence and mortality: a meta-analysis. Cancer Epidemiol 2013;37:207–18.10.1016/j.canep.2012.12.009Suche in Google Scholar PubMed

166. Jiralerspong S, Palla SL, Giordano SH, Meric-Bernstam F, Liedtke C, Barnett CM, Hsu L, Hung MC, Hortobagyi GN, Gonzalez-Angulo AM. Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J Clin Oncol 2009;27:3297–302.10.1200/JCO.2009.19.6410Suche in Google Scholar PubMed PubMed Central

167. Lega IC, Austin PC, Gruneir A, Goodwin PJ, Rochon PA, Lipscombe LL. Association between metformin therapy and mortality after breast cancer: a population-based study. Diabetes Care 2013;36:3018–26.10.2337/dc12-2535Suche in Google Scholar PubMed PubMed Central

168. Onitilo AA, Donald M, Stankowski RV, Engel JM, Williams G, Doi SA. Breast and prostate cancer survivors in a diabetic cohort: results from the Living with Diabetes Study. Clin Med Res 2013;11:210–8.10.3121/cmr.2013.1156Suche in Google Scholar PubMed PubMed Central

169. Dowling RJ, Zakikhani M, Fantus IG, Pollak M, Sonenberg N. Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res 2007;67:10804–12.10.1158/0008-5472.CAN-07-2310Suche in Google Scholar PubMed

170. Cusi K, Consoli A, DeFronzo RA. Metabolic effects of metformin on glucose and lactate metabolism in noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 1996;81:4059–67.10.1210/jcem.81.11.8923861Suche in Google Scholar

171. Monami M, Dicembrini I, Mannucci E. Thiazolidinediones and cancer: results of a meta-analysis of randomized clinical trials. Acta Diabetol 2014;51:91–101.10.1007/s00592-013-0504-8Suche in Google Scholar PubMed

172. Subbaramaiah K, Howe LR, Zhou XK, Yang P, Hudis CA, Kopelovich L, Dannenberg AJ. Pioglitazone, a PPARgamma agonist, suppresses CYP19 transcription: evidence for involvement of 15-hydroxyprostaglandin dehydrogenase and BRCA1. Cancer Prev Res 2012;5:1183–94.10.1158/1940-6207.CAPR-12-0201Suche in Google Scholar PubMed PubMed Central

173. Subbaramaiah K, Hudis C, Chang SH, Hla T, Dannenberg AJ. EP2 and EP4 receptors regulate aromatase expression in human adipocytes and breast cancer cells. Evidence of a BRCA1 and p300 exchange. J Biol Chem 2008;283:3433–44.10.1074/jbc.M705409200Suche in Google Scholar PubMed

174. Ghosh S, Lu Y, Katz A, Hu Y, Li R. Tumor suppressor BRCA1 inhibits a breast cancer-associated promoter of the aromatase gene (CYP19) in human adipose stromal cells. Am J Physiol Endocrinol Metab 2007;292:E246–52.10.1152/ajpendo.00242.2006Suche in Google Scholar PubMed

175. Miyazaki Y, Mahankali A, Wajcberg E, Bajaj M, Mandarino LJ, DeFronzo RA. Effect of pioglitazone on circulating adipocytokine levels and insulin sensitivity in type 2 diabetic patients. J Clin Endocrinol Metab 2004;89:4312–9.10.1210/jc.2004-0190Suche in Google Scholar PubMed

176. Rasouli N, Yao-Borengasser A, Miles LM, Elbein SC, Kern PA. Increased plasma adiponectin in response to pioglitazone does not result from increased gene expression. Am J Physiol Endocrinol Metab 2006;290:E42–6.10.1152/ajpendo.00240.2005Suche in Google Scholar

177. Terrasi M, Bazan V, Caruso S, Insalaco L, Amodeo V, Fanale D, Corsini LR, Contaldo C, Mercanti A, Fiorio E, Lo Re G, Cicero G, Surmacz E, Russo A. Effects of PPARgamma agonists on the expression of leptin and vascular endothelial growth factor in breast cancer cells. J Cell Physiol 2013;228:1368–74.10.1002/jcp.24295Suche in Google Scholar

178. Catalano S, Mauro L, Bonofiglio D, Pellegrino M, Qi H, Rizza P, Vizza D, Bossi G, Ando S. In vivo and in vitro evidence that PPARgamma ligands are antagonists of leptin signaling in breast cancer. Am J Pathol 2011;179:1030–40.10.1016/j.ajpath.2011.04.026Suche in Google Scholar

179. Ahern TP, Lash TL, Damkier P, Christiansen PM, Cronin-Fenton DP. Statins and breast cancer prognosis: evidence and opportunities. Lancet Oncol 2014;15:e461–8.10.1016/S1470-2045(14)70119-6Suche in Google Scholar

180. Available at: http://www.clinicaltrials.gov. Accessed 8 April 2015.Suche in Google Scholar

181. McCawley GM, Ferriss JS, Geffel D, Northup CJ, Modesitt SC. Cancer in obese women: potential protective impact of bariatric surgery. J Am Coll Surg 2009;208:1093–98.10.1016/j.jamcollsurg.2009.01.045Suche in Google Scholar PubMed

182. Adams TD, Hunt SC. Cancer and obesity: effect of bariatric surgery. World J Surg 2009;33:2028–33.10.1007/s00268-009-0169-1Suche in Google Scholar PubMed

183. Christou NV, Lieberman M, Sampalis F, Sampalis JS. Bariatric surgery reduces cancer risk in morbidly obese patients. Surg Obes Relat Dis 2008;4:691–5.10.1016/j.soard.2008.08.025Suche in Google Scholar PubMed

184. Wills SM, Zekman R, Bestul D, Kuwajerwala N, Decker D. Tamoxifen malabsorption after Roux-en-Y gastric bypass surgery: case series and review of the literature. Pharmacotherapy 2010;30:217.10.1592/phco.30.2.217Suche in Google Scholar PubMed

185. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, Kolodny GM, Kahn CR. Identification and importance of brown adipose tissue in adult humans. N Engl J Med 2009;360: 1509–17.10.1056/NEJMoa0810780Suche in Google Scholar PubMed PubMed Central

186. van der Lans AA, Hoeks J, Brans B, Vijgen GH, Visser MG, Vosselman MJ, Hansen J, Jorgensen JA, Wu J, Mottaghy FM, Schrauwen P, van Marken Lichtenbelt WD. Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J Clin Invest 2013;123:3395–403.10.1172/JCI68993Suche in Google Scholar PubMed PubMed Central

187. Enerback S. Human brown adipose tissue. Cell Metab 2010; 11:248–52.10.1016/j.cmet.2010.03.008Suche in Google Scholar PubMed

188. Vijgen GH, Bouvy ND, Teule GJ, Brans B, Schrauwen P, van Marken Lichtenbelt WD. Brown adipose tissue in morbidly obese subjects. PloS One 2011;6:e17247.10.1371/journal.pone.0017247Suche in Google Scholar PubMed PubMed Central

189. Bartelt A, Heeren J. Adipose tissue browning and metabolic health. Nat Rev Endocrinol 2014;10:24–36.10.1038/nrendo.2013.204Suche in Google Scholar PubMed

190. Brestoff JR, Kim BS, Saenz SA, Stine RR, Monticelli LA, Sonnenberg GF, Thome JJ, Farber DL, Lutfy K, Seale P, Artis D. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 2015;519:242–6.10.1038/nature14115Suche in Google Scholar PubMed PubMed Central

191. Lee P, Linderman JD, Smith S, Brychta RJ, Wang J, Idelson C, Perron RM, Werner CD, Phan GQ, Kammula US, Kebebew E, Pacak K, Chen KY, Celi FS. Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab 2014;19:302–9.10.1016/j.cmet.2013.12.017Suche in Google Scholar PubMed PubMed Central

192. Bordicchia M, Liu D, Amri EZ, Ailhaud G, Dessi-Fulgheri P, Zhang C, Takahashi N, Sarzani R, Collins S. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J Clin Invest 2012;122:1022–36.10.1172/JCI59701Suche in Google Scholar PubMed PubMed Central

193. Elsen M, Raschke S, Tennagels N, Schwahn U, Jelenik T, Roden M, Romacho T, Eckel J. BMP4 and BMP7 induce the white-to-brown transition of primary human adipose stem cells. Am J Physiol Cell Physiol 2014;306:C431–40.10.1152/ajpcell.00290.2013Suche in Google Scholar PubMed

194. Tiraby C, Tavernier G, Lefort C, Larrouy D, Bouillaud F, Ricquier D, Langin D. Acquirement of brown fat cell features by human white adipocytes. J Biol Chem 2003;278:33370–6.10.1074/jbc.M305235200Suche in Google Scholar PubMed

195. Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J. Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem 2010;285:7153–64.10.1074/jbc.M109.053942Suche in Google Scholar PubMed PubMed Central

196. Ahfeldt T, Schinzel RT, Lee YK, Hendrickson D, Kaplan A, Lum DH, Camahort R, Xia F, Shay J, Rhee EP, Clish CB, Deo RC, Shen T, Lau FH, Cowley A, Mowrer G, Al-Siddiqi H, Nahrendorf M, Musunuru K, Gerszten RE, Rinn JL, Cowan CA. Programming human pluripotent stem cells into white and brown adipocytes. Nat Cell Biol 2012;14:209–19.10.1038/ncb2411Suche in Google Scholar PubMed PubMed Central

197. Kajimura S, Seale P, Spiegelman BM. Transcriptional control of brown fat development. Cell Metab 2010;11:257–62.10.1016/j.cmet.2010.03.005Suche in Google Scholar PubMed PubMed Central

198. Bi S, Li L. Browning of white adipose tissue: role of hypothalamic signaling. Ann NY Acad Sci 2013;1302:30–4.10.1111/nyas.12258Suche in Google Scholar PubMed PubMed Central

199. Richard D, Monge-Roffarello B, Chechi K, Labbe SM, Turcotte EE. Control and physiological determinants of sympathetically mediated brown adipose tissue thermogenesis. Front Endocrinol 2012;3:36.10.3389/fendo.2012.00036Suche in Google Scholar PubMed PubMed Central

200. Lee JY, Takahashi N, Yasubuchi M, Kim YI, Hashizaki H, Kim MJ, Sakamoto T, Goto T, Kawada T. Triiodothyronine induces UCP-1 expression and mitochondrial biogenesis in human adipocytes. Am J Physiol Cell Physiol 2012;302:C463–72.10.1152/ajpcell.00010.2011Suche in Google Scholar PubMed

201. Stefanidis A, Wiedmann NM, Adler ES, Oldfield BJ. Hypothalamic control of adipose tissue. Best Pract Res Clin Endocrinol Metab 2014;28:685–701.10.1016/j.beem.2014.08.001Suche in Google Scholar PubMed

202. Beiroa D, Imbernon M, Gallego R, Senra A, Herranz D, Villarroya F, Serrano M, Ferno J, Salvador J, Escalada J, Dieguez C, Lopez M, Fruhbeck G, Nogueiras R. GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes 2014;63:3346–58.10.2337/db14-0302Suche in Google Scholar PubMed

203. Cypess AM, Chen YC, Sze C, Wang K, English J, Chan O, Holman AR, Tal I, Palmer MR, Kolodny GM, Kahn CR. Cold but not sympathomimetics activates human brown adipose tissue in vivo. Proc Natl Acad Sci USA 2012;109:10001–5.10.1073/pnas.1207911109Suche in Google Scholar PubMed PubMed Central

204. Carey AL, Formosa MF, Van Every B, Bertovic D, Eikelis N, Lambert GW, Kalff V, Duffy SJ, Cherk MH, Kingwell BA. Ephedrine activates brown adipose tissue in lean but not obese humans. Diabetologia 2013;56:147–55.10.1007/s00125-012-2748-1Suche in Google Scholar PubMed

205. Blondin DP, Labbe SM, Tingelstad HC, Noll C, Kunach M, Phoenix S, Guerin B, Turcotte EE, Carpentier AC, Richard D, Haman F. Increased brown adipose tissue oxidative capacity in cold-acclimated humans. J Clin Endocrinol Metab 2014;99:E438–46.10.1210/jc.2013-3901Suche in Google Scholar PubMed PubMed Central

206. Schopman JE, Admiraal WM, Soeters MR, Ackermans MT, Bisschop PL, Frier BM, Hoekstra JB, Romijn JA, Verberne HJ, Holleman F. (18)F-fluorodeoxyglucose uptake in brown adipose tissue during insulin-induced hypoglycemia and mild cold exposure in non-diabetic adults. Metab Clin Exp 2014;63:1280–6.10.1016/j.metabol.2014.06.017Suche in Google Scholar PubMed

Received: 2015-4-20
Accepted: 2015-5-23
Published Online: 2015-7-8
Published in Print: 2015-7-1

©2015 by De Gruyter

Heruntergeladen am 9.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hmbci-2015-0018/html
Button zum nach oben scrollen