Abstract
Polycystic ovary syndrome (PCOS) is a heterogeneous disorder of unknown etiology that may arise from a combination of a number of underlying genetic interactions and predispositions with environmental factors. Endocrine disruptors and, in particular, Bisphenol A may represent one of the many underlying causes of the syndrome as they are experimentally linked to metabolic and reproductive derangements resembling PCOS-related disorders. Exposure to endocrine-disrupting chemicals may act as an environmental modifier to worsen symptoms of PCOS in affected females or to contribute to the final phenotype of the syndrome in genetically predisposed individuals.
References
1. Diamanti-Kandarakis E, Kouli CR, Bergiele AT, Filandra FA, Tsianateli TC, Spina GG, Zapanti ED, Bartzis MI. A survey of the polycystic ovary syndrome in the Greek island of Lesbos: hormonal and metabolic profile. J Clin Endocrinol Metab 1999;84:4006–11.10.1210/jcem.84.11.6148Suche in Google Scholar
2. Diamanti-Kandarakis E, Piperi C, Spina J, Argyrakopoulou G, Papanastasiou L, Bergiele A, Panidis D. Polycystic ovary syndrome: the influence of environmental and genetic factors. Hormones (Athens) 2006;5:17–34.10.14310/horm.2002.11165Suche in Google Scholar
3. Abbott DH, Dumesic DA, Franks S. Developmental origin of polycystic ovary syndrome – a hypothesis. J Endocrinol 2002;174:1–5.10.1677/joe.0.1740001Suche in Google Scholar
4. Dumesic DA, Abbott DH, Padmanabhan V. Polycystic ovary syndrome and its developmental origins. Rev Endocr Metab Disord 2007;8:127–41.10.1007/s11154-007-9046-0Suche in Google Scholar
5. Franks S, Mason H, Willis D. Follicular dynamics in the polycystic ovary syndrome. Mol Cell Endocrinol 2000;163:49–52.10.1016/S0303-7207(99)00239-7Suche in Google Scholar
6. Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, Zoeller RT, Gore AC. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev 2009;30:293–342.10.1210/er.2009-0002Suche in Google Scholar PubMed PubMed Central
7. Kavlock RJ, Daston GP, DeRosa C, Fenner-Crisp P, Gray LE, Kaattari S, Lucier G, Luster M, Mac MJ, Maczka C, Miller R, Moore J, Rolland R, Scott G, Sheehan DM, Sinks T, Tilson HA. Research needs for the risk assessment of health and environmental effects of endocrine disruptors: a report of the U.S. EPA-sponsored workshop. Environ Health Perspect 1996;104:715–40.Suche in Google Scholar
8. Dunaif A. Insulin resistance and the polycystic ovary syndrome: mechanism and implications for pathogenesis. Endocr Rev 1997;18:774–800.Suche in Google Scholar
9. Diamanti-Kandarakis E, Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev 2012;33:981–1030.10.1210/er.2011-1034Suche in Google Scholar PubMed PubMed Central
10. Ehrmann DA. Polycystic ovary syndrome. N Engl J Med 2005;352:1223–36.10.1056/NEJMra041536Suche in Google Scholar PubMed
11. Jonard S, Dewailly D. The follicular excess in polycystic ovaries, due to intra-ovarian hyperandrogenism, may be the main culprit for the follicular arrest. Hum Reprod Update 2004;10:107–17.10.1093/humupd/dmh010Suche in Google Scholar PubMed
12. Nelson VL, Qin KN, Rosenfield RL, Wood JR, Penning TM, Legro RS, Strauss JF 3rd, McAllister JM. The biochemical basis for increased testosterone production in theca cells propagated from patients with polycystic ovary syndrome. J Clin Endocrinol Metab 2001;86:5925–33.10.1210/jcem.86.12.8088Suche in Google Scholar PubMed
13. Pasquali R, Stener-Victorin E, Yildiz BO, Duleba AJ, Hoeger K, Mason H, Homburg R, Hickey T, Franks S, Tapanainen JS, Balen A, Abbott DH, Diamanti-Kandarakis E, Legro RS. PCOS Forum: research in polycystic ovary syndrome today and tomorrow. Clin Endocrinol (Oxf) 2011;74:424–33.10.1111/j.1365-2265.2010.03956.xSuche in Google Scholar PubMed PubMed Central
14. Diamanti-Kandarakis E, Piperi C. Genetics of polycystic ovary syndrome: searching for the way out of the labyrinth. Hum Reprod Update 2005;11:631–43.10.1093/humupd/dmi025Suche in Google Scholar PubMed
15. Burt Solorzano CM, Beller JP, Abshire MY, Collins JS, McCartney CR, Marshall JC. Neuroendocrine dysfunction in polycystic ovary syndrome. Steroids 2012;77:332–7.10.1016/j.steroids.2011.12.007Suche in Google Scholar PubMed PubMed Central
16. Soules MR, Steiner RA, Clifton DK, Cohen NL, Aksel S, Bremner WJ. Progesterone modulation of pulsatile luteinizing hormone secretion in normal women. J Clin Endocrinol Metab 1984;58:378–83.10.1210/jcem-58-2-378Suche in Google Scholar PubMed
17. Pastor CL, Griffin-Korf ML, Aloi JA, Evans WS, Marshall JC. Polycystic ovary syndrome: evidence for reduced sensitivity of the gonadotropin-releasing hormone pulse generator to inhibition by estradiol and progesterone. J Clin Endocrinol Metab 1998;83:582–90.10.1210/jc.83.2.582Suche in Google Scholar
18. Eagleson CA, Gingrich MB, Pastor CL, Arora TK, Burt CM, Evans WS, Marshall JC. Polycystic ovarian syndrome: evidence that flutamide restores sensitivity of the gonadotropin-releasing hormone pulse generator to inhibition by estradiol and progesterone. J Clin Endocrinol Metab 2000;85:4047–52.Suche in Google Scholar
19. Baillie-Hamilton PF. Chemical toxins: a hypothesis to explain the global obesity epidemic. J Altern Complement Med 2002;8: 185–92.10.1089/107555302317371479Suche in Google Scholar PubMed
20. Grün F, Blumberg B. Environmental obesogens: organotins and endocrine disruption via nuclear receptor signaling. Endocrinology 2006;147:50–5.10.1210/en.2005-1129Suche in Google Scholar PubMed
21. Holtcamp W. Obesogens: an environmental link to obesity. Environ Health Perspect 2012;120:62–8.10.1289/ehp.120-a62Suche in Google Scholar PubMed PubMed Central
22. Grün F, Blumberg B. Minireview: the case for obesogens. Mol Endocrinol 2009;23:1127–34.10.1210/me.2008-0485Suche in Google Scholar PubMed PubMed Central
23. Diamanti-Kandarakis E, Palioura E, Kandarakis SA, Koutsilieris M. The impact of endocrine disruptors on endocrine targets. Horm Metab Res 2010;42:543–52.10.1055/s-0030-1252034Suche in Google Scholar PubMed
24. Smink A, Ribas-Fito N, Garcia R, Torrent M, Mendez MA, Grimalt JO, Sunyer J. Exposure to hexachlorobenzene during pregnancy increases the risk of overweight in children aged 6 years. Acta Paediatr 2008;97:1465–9.10.1111/j.1651-2227.2008.00937.xSuche in Google Scholar PubMed
25. Carwile JL, Michels KB. Urinary bisphenol A and obesity: NHANES 2003–2006. Environ Res 2011;111:825–30.10.1016/j.envres.2011.05.014Suche in Google Scholar PubMed PubMed Central
26. Lang IA, Galloway TS, Scarlett A, Henley WE, Depledge M, Wallace RB, Melzer D. Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults. J Am Med Assoc 2008;300:1303–10.10.1001/jama.300.11.1303Suche in Google Scholar PubMed
27. Alonso-Magdalena P, Quesada I, Nadal A. Endocrine disruptors in the etiology of type 2 diabetes mellitus. Nat Rev Endocrinol 2011;7:346–53.10.1038/nrendo.2011.56Suche in Google Scholar PubMed
28. Uzumcu M, Zachow R. Developmental exposure to environmental endocrine disruptors: consequences within the ovary and on female reproductive function. Reprod Toxicol 2007;23:337–52.10.1016/j.reprotox.2006.10.006Suche in Google Scholar PubMed PubMed Central
29. Craig ZR, Wang W, Flaws JA. Endocrine-disrupting chemicals in ovarian function: effects on steroidogenesis, metabolism and nuclear receptor signaling. Reproduction 2011;142:633–46.10.1530/REP-11-0136Suche in Google Scholar PubMed
30. Uzumcu M, Zama AM, Oruc E. Epigenetic mechanisms in the actions of endocrine-disrupting chemicals: gonadal effects and role in female reproduction. Reprod Domest Anim 2012;47: 338–47.10.1111/j.1439-0531.2012.02096.xSuche in Google Scholar PubMed PubMed Central
31. Fowler PA, Bellingham M, Sinclair KD, Evans NP, Pocar P, Fischer B, Schaedlich K, Schmidt JS, Amezaga MR, Bhattacharya S, Rhind SM, O′Shaughnessy PJ. Impact of endocrine disrupting compounds (EDCs) on female reproductive health. Mol Cell Endocrinol 2012;355:231–9.10.1016/j.mce.2011.10.021Suche in Google Scholar PubMed
32. Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV. Human exposure to Bisphenol A (BPA). Reprod Toxicol 2007;24:139–77.10.1016/j.reprotox.2007.07.010Suche in Google Scholar PubMed
33. Richter CA, Birnbaum LS, Farabollini F, Newbold RR, Rubin BS, Talsness CE, Vandenbergh JG, Walser-Kuntz DR, vom Saal FS. In vivo effects of bisphenol A in laboratory rodent studies. Reprod Toxicol 2007;24:199–224.10.1016/j.reprotox.2007.06.004Suche in Google Scholar PubMed PubMed Central
34. Rochester JR. Bisphenol A and human health: a review of the literature. Reprod Toxicol 2013;42:132–55.10.1016/j.reprotox.2013.08.008Suche in Google Scholar
35. Fernandez M, Bourguignon N, Lux-Lantos V, Libertun C. Neonatal exposure to bisphenol a and reproductive and endocrine alterations resembling the polycystic ovarian syndrome in adult rats. Environ Health Perspect 2010;118:1217–22.10.1289/ehp.0901257Suche in Google Scholar
36. Kandaraki E, Chatzigeorgiou A, Livadas S, Palioura E, Economou F, Koutsilieris M, Palimeri S, Panidis D, Diamanti-Kandarakis E. Endocrine disruptors and polycystic ovary syndrome (PCOS): elevated serum levels of bisphenol A in women with PCOS. J Clin Endocrinol Metab 2011;96:480–4.10.1210/jc.2010-1658Suche in Google Scholar
37. Masuno H, Kidani T, Sekiya K, Sakayama K, Shiosaka T, Yamamoto H, Honda K. Bisphenol A in combination with insulin can accelerate the conversion of 3T3-L1 fibroblasts to adipocytes. J Lipid Res 2002;43:676–84.10.1016/S0022-2275(20)30108-5Suche in Google Scholar
38. Masuno H, Iwanami J, Kidani T, Sakayama K, Honda K. Bisphenol a accelerates terminal differentiation of 3T3-L1 cells into adipocytes through the phosphatidylinositol 3-kinase pathway. Toxicol Sci 2005;84:319–27.10.1093/toxsci/kfi088Suche in Google Scholar
39. Sakurai K, Kawazuma M, Adachi T, Harigaya T, Saito Y, Hashimoto N, Mori C. Bisphenol A affects glucose transport in mouse 3T3-F442A adipocytes. Br J Pharmacol 2004;141:209–14.10.1038/sj.bjp.0705520Suche in Google Scholar
40. Wada K, Sakamoto H, Nishikawa K, Sakuma S, Nakajima A, Fujimoto Y, Kamisaki Y. Life style-related diseases of the digestive system: endocrine disruptors stimulate lipid accumulation in target cells related to metabolic syndrome. J Pharmacol Sci 2007;105:133–7.10.1254/jphs.FM0070034Suche in Google Scholar
41. Honma S, Suzuki A, Buchanan DL, Katsu Y, Watanabe H, Iguchi T. Low dose effect of in utero exposure to bisphenol A and diethylstilbestrol on female mouse reproduction. Reprod Toxicol 2002;16:117–22.10.1016/S0890-6238(02)00006-0Suche in Google Scholar
42. Rubin BS, Murray MK, Damassa DA, King JC, Soto AM. Perinatal exposure to low doses of bisphenol A affects body weight, patterns of estrous cyclicity, and plasma LH levels. Environ Health Perspect 2001;109:675–80.10.1289/ehp.01109675Suche in Google Scholar PubMed PubMed Central
43. Somm E, Schwitzgebel VM, Toulotte A, Cederroth CR, Combescure C, Nef S, Aubert ML, Hüppi PS. Perinatal exposure to bisphenol A alters early adipogenesis in the rat. Environ Health Perspect 2009;117:1549–55.10.1289/ehp.11342Suche in Google Scholar PubMed PubMed Central
44. Hugo ER, Brandebourg TD, Woo JG, Loftus J, Alexander JW, Ben-Jonathan N. Bisphenol A at environmentally relevant doses inhibits adiponectin release from human adipose tissue explants and adipocytes. Environ Health Perspect 2008;116:1642–7.10.1289/ehp.11537Suche in Google Scholar
45. Ben-Jonathan N, Hugo ER, Brandebourg TD. Effects of bisphenol A on adipokine release from human adipose tissue: implications for the metabolic syndrome. Mol Cell Endocrinol 2009;304: 49–54.10.1016/j.mce.2009.02.022Suche in Google Scholar
46. Brent RL. Bisphenol A and obesity in children and adolescents. J Am Med Assoc 2013;309:134.10.1001/jama.2012.91936Suche in Google Scholar
47. Sabanayagam C, Teppala S, Shankar A. Relationship between urinary bisphenol A levels and prediabetes among subjects free of diabetes. Acta Diabetol 2013;50:625–31.10.1007/s00592-013-0472-zSuche in Google Scholar
48. Alonso-Magdalena P, Morimoto S, Ripoll C, Fuentes E, Nadal A. The estrogenic effect of bisphenol A disrupts pancreatic beta-cell function in vivo and induces insulin resistance. Environ Health Perspect 2006;114:106–12.10.1289/ehp.8451Suche in Google Scholar
49. Alonso-Magdalena P, Laribi O, Ropero AB, Fuentes E, Ripoll C, Soria B, Nadal A. Low doses of bisphenol A and diethylstilbestrol impair Ca2+ signals in pancreatic alpha-cells through a nonclassical membrane estrogen receptor within intact islets of Langerhans. Environ Health Perspect 2005;113:969–77.10.1289/ehp.8002Suche in Google Scholar
50. Ikezuki Y, Tsutsumi O, Takai Y, Kamei Y, Taketani Y. Determination of bisphenol A concentrations in human biological fluids reveals significant early prenatal exposure. Hum Reprod 2002;17:2839–41.10.1093/humrep/17.11.2839Suche in Google Scholar
51. Peretz J, Gupta RK, Singh J, Hernández-Ochoa I, Flaws JA. Bisphenol A impairs follicle growth, inhibits steroidogenesis, and downregulates rate-limiting enzymes in the estradiol biosynthesis pathway. Toxicol Sci 2011;119:209–17.10.1093/toxsci/kfq319Suche in Google Scholar
52. Kato H, Ota T, Furuhashi T, Ohta Y, Iguchi T. Changes in reproductive organs of female rats treated with bisphenol A during the neonatal period. Reprod Toxicol 2003;17:283–8.10.1016/S0890-6238(03)00002-9Suche in Google Scholar
53. Adewale HB, Jefferson WN, Newbold RR, Patisaul HB. Neonatal bisphenol-a exposure alters rat reproductive development and ovarian morphology without impairing activation of gonadotropin-releasing hormone neurons. Biol Reprod 2009;81:690–9.10.1095/biolreprod.109.078261Suche in Google Scholar PubMed PubMed Central
54. Stoker C, Beldoménico PM, Bosquiazzo VL, Zayas MA, Rey F, Rodríguez H, Muñoz-de-Toro M, Luque EH. Developmental exposure to endocrine disruptor chemicals alters follicular dynamics and steroid levels in Caiman latirostris. Gen Comp Endocrinol 2008;156:603–12.10.1016/j.ygcen.2008.02.011Suche in Google Scholar
55. Li Y, Zhang W, Liu J, Wang W, Li H, Zhu J, Weng S, Xiao S, Wu T. Prepubertal bisphenol A exposure interferes with ovarian follicle development and its relevant gene expression. Reprod Toxicol 2013 [Epub ahead of print].10.1016/j.reprotox.2013.09.002Suche in Google Scholar
56. Zhou W, Liu J, Liao L, Han S, Liu J. Effect of bisphenol A on steroid hormone production in rat ovarian theca-interstitial and granulosa cells. Mol Cell Endocrinol 2008;283:12–8.10.1016/j.mce.2007.10.010Suche in Google Scholar
57. Collet SH, Picard-Hagen N, Viguié C, Lacroix MZ, Toutain PL, Gayrard V. Estrogenicity of bisphenol A: a concentration-effect relationship on luteinizing hormone secretion in a sensitive model of prepubertal lamb. Toxicol Sci 2010;117:54–62.10.1093/toxsci/kfq186Suche in Google Scholar
58. Fernandez M, Bianchi M, Lux-Lantos V, Libertun C. Neonatal exposure to bisphenol a alters reproductive parameters and gonadotropin releasing hormone signaling in female rats. Environ Health Perspect 2009;117:757–62.10.1289/ehp.0800267Suche in Google Scholar
59. Takeuchi T, Tsutsumi O, Ikezuki Y, Takai Y, Taketani Y. Positive relationship between androgen and the endocrine disruptor, bisphenol A, in normal women and women with ovarian dysfunction. Endocr J 2004;51:165–9.10.1507/endocrj.51.165Suche in Google Scholar
60. Takeuchi T, Tsutsumi O. Serum bisphenol A concentrations showed gender differences, possibly linked to androgen levels. Bioch Bioph Res Com 2002;291:76–8.10.1006/bbrc.2002.6407Suche in Google Scholar
61. Takeuchi T, Tsutsumi O, Ikezuki Y, Kamei Y, Osuga Y, Fujiwara T, Takai Y, Momoeda M, Yano T, Taketani Y. Elevated serum bisphenol A levels under hyperandrogenic conditions may be caused by decreased UDP-glucuronosyltransferase activity. Endocr J 2006;53:485–91.10.1507/endocrj.K06-032Suche in Google Scholar
62. Hanioka N, Jinno H, Nishimura T, Ando M. Suppression of male- specific cytochrome P450 isoforms by bisphenol A in rat liver. Arch Toxicol 1998;72:387–94.10.1007/s002040050518Suche in Google Scholar
63. Dechaud H, Ravard C, Claustrat F, de la Perriere AB, Pugeat M. Xenoestrogen interaction with human sex hormone-binding globulin (hSHBG). Steroids 1999;64:328–34.10.1016/S0039-128X(98)00114-7Suche in Google Scholar
©2014 by Walter de Gruyter Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Topic 3: Adipose Tissue, Sex Hormones, and Endocrine Disruptors: Reproductive, Metabolic and Neuronal Impacts Review Articles
- Cross-talk between reproduction and energy homeostasis: central impact of estrogens, leptin and kisspeptin signaling
- Energy metabolism and hindbrain AMPK: regulation by estradiol
- Endocrine disruptors and polycystic ovary syndrome: a focus on Bisphenol A and its potential pathophysiological aspects
Artikel in diesem Heft
- Frontmatter
- Topic 3: Adipose Tissue, Sex Hormones, and Endocrine Disruptors: Reproductive, Metabolic and Neuronal Impacts Review Articles
- Cross-talk between reproduction and energy homeostasis: central impact of estrogens, leptin and kisspeptin signaling
- Energy metabolism and hindbrain AMPK: regulation by estradiol
- Endocrine disruptors and polycystic ovary syndrome: a focus on Bisphenol A and its potential pathophysiological aspects