Startseite Cross-talk between adipose tissue and the HPA axis in obesity and overt hypercortisolemic states
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Cross-talk between adipose tissue and the HPA axis in obesity and overt hypercortisolemic states

  • Valentina Vicennati EMAIL logo , Silvia Garelli , Eleonora Rinaldi , Guido Di Dalmazi , Uberto Pagotto und Renato Pasquali
Veröffentlicht/Copyright: 11. März 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In addition to its roles in providing insulation and mechanical support, adipose tissue (AT) has been recognised as the major site for storage of surplus fuel. Since leptin was discovered, white AT (WAT) has been recognised as an endocrine organ and an important source of biologically active substances with local and/or systemic action called adipokines. The metabolic and endocrine activities of AT are under the control of several hormones: a particular role has been played by glucocorticoids (GC), which able to participate, along with other hormones, both in recruitment of progenitor cells and in differentiation and secretive activities. AT is also able to generate cortisol from cortisone through 11β-hydroxysteroid-dehydrogenase (11β-HSD). There are controversial reports in the literature, showing a hyperactivity of 11β-HSD in obesity. It has been postulated that obesity, particularly the visceral body fat distribution (V-BFD), may be considered a maladaptation to stress exposure, thus leading to hyperactivation of the hypothalamic-pituitary-adrenal (HPA) axis, and higher-than-normal cortisol levels. In this review, we will examine the cross-talk between the HPA axis and AT, their relationship under stressful events, depending on steroid hormones and different adipokine secretions.


Corresponding author: Dr. Valentina Vicennati, Division of Endocrinology, Department of Clinical Medicine, S. Orsola-Malpighi Hospital, University Alma Mater Studiorum, Via Massarenti 9, 40138 Bologna, Italy, Phone: +39 (0)51 6364310, Fax: +39 (0)51 6363080, E-mail:

References

1. Mariman EC, Wang P. Adipocyte extracellular matrix composition, dynamics and role in obesity. Cell Mol Life Sci 2010;67:1277–92.10.1007/s00018-010-0263-4Suche in Google Scholar PubMed PubMed Central

2. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 1994;372:425–32.10.1038/372425a0Suche in Google Scholar PubMed

3. Chudek J, Adamczak M, Nieszporek T, Wiecek A. The adipose tissue as an endocrine organ – a nephrologists’ perspective. Contrib Nephrol 2006;151:70–90.10.1159/000095320Suche in Google Scholar PubMed

4. Wozniak SE, Gee LL, Wachtel MS, Frezza EE. Adipose tissue: the new endocrine organ? A review article. Dig Dis Sci 2009;54:1847–56.10.1007/s10620-008-0585-3Suche in Google Scholar PubMed

5. Galic S, Oakhill JS, Steinberg GR. Adipose tissue as an endocrine organ. Mol Cell Endocrinol 2010;316:129–39.10.1016/j.mce.2009.08.018Suche in Google Scholar PubMed

6. Alfonso B, Araki T, Zumoff B. Is there visceral adipose tissue (VAT) Intracellular hypercortisolism in human obesity? Horm Metab Res 2013;45:329–31.10.1055/s-0033-1337986Suche in Google Scholar PubMed

7. Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev 2004;84:277–359.10.1152/physrev.00015.2003Suche in Google Scholar PubMed

8. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, Kolodny GM, Kahn CR. Identification and importance of brown adipose tissue in adult humans. N Engl J Med 2009;360:1509–17.10.1056/NEJMoa0810780Suche in Google Scholar PubMed PubMed Central

9. Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 2007;293:E444–52.10.1152/ajpendo.00691.2006Suche in Google Scholar PubMed

10. Seale P, Lazar MA. Brown fat in humans: turning up the heat on obesity. Diabetes 2009;58:1482–4.10.2337/db09-0622Suche in Google Scholar PubMed PubMed Central

11. Trujillo ME, Scherer PE. Adipose tissue-derived factors: impact on health and disease. Endocr Rev 2006;27:762–78.10.1210/er.2006-0033Suche in Google Scholar PubMed

12. Avram AS, Avram MM, James WD. Subcutaneous fat in normal and diseased states: 2. Anatomy and physiology of white and brown adipose tissue. J Am Acad Dermatol 2005;53:671–83.10.1016/j.jaad.2005.05.015Suche in Google Scholar PubMed

13. Arner P, Hellström L, Wahrenberg H, Brönnegård M. Betaadrenoceptor expression in human fat cells from different regions. J Clin Invest 1990;86:1595–600.10.1172/JCI114880Suche in Google Scholar PubMed PubMed Central

14. Brönnegård M, Arner P, Hellström L, Akner G, Gustafsson JA. Glucocorticoid receptor messenger ribonucleic acid in different regions of human adipose tissue. Endocrinology 1990;127:1689–96.10.1210/endo-127-4-1689Suche in Google Scholar PubMed

15. Giorgino F, Laviola L, Eriksson JW. Regional differences of insulin action in adipose tissue: insights from in vivo and in vitro studies. Acta Physiol Scand 2005;183:13–30.10.1111/j.1365-201X.2004.01385.xSuche in Google Scholar PubMed

16. Macotela Y, Boucher J, Tran TT, Kahn CR. Sex and depot differences in adipocyte insulin sensitivity and glucose metabolism. Diabetes 2009;58:803–12.10.2337/db08-1054Suche in Google Scholar PubMed PubMed Central

17. Power ML, Schulkin J. Sex differences in fat storage, fat metabolism, and the health risks from obesity: possible evolutionary origins. Br J Nutr 2008;99:931–40.10.1017/S0007114507853347Suche in Google Scholar PubMed

18. Wajchenberg BL. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev 2000;21:697–738.10.1210/edrv.21.6.0415Suche in Google Scholar PubMed

19. Tran TT, Yamamoto Y, Gesta S, Kahn CR. Beneficial effects of subcutaneous fat transplantation on metabolism. Cell Metab 2008;7:410–20.10.1016/j.cmet.2008.04.004Suche in Google Scholar PubMed PubMed Central

20. Manolopoulos KN, Karpe F, Frayn KN. Gluteofemoral body fat as a determinant of metabolic health. Int J Obes (Lond) 2010;34:949–59.10.1038/ijo.2009.286Suche in Google Scholar PubMed

21. Maeda K, Okubo K, Shimomura I, Mizuno K, Matsuzawa Y, Matsubara K. Analysis of an expression profile of genes in the human adipose tissue. Gene 1997;190:227–35.10.1016/S0378-1119(96)00730-5Suche in Google Scholar

22. Kotani K, Tokunaga K, Fujioka S, Kobatake T, Keno Y, Yoshida S, Shimomura I, Tarui S, Matsuzawa Y. Sexual dimorphism of age-related changes in whole-body fat distribution in the obese. Int J Obes Relat Metab Disord 1994;18:207–2.Suche in Google Scholar

23. Havel PJ, Kasim-Karakas S, Dubuc GR, Mueller W, Phinney SD. Gender differences in plasma leptin concentrations. Nat Med 1996;2:949–50.10.1038/nm0996-949bSuche in Google Scholar PubMed

24. Demerath EW, Sun SS, Rogers N, Lee M, Reed D, Choh AC, Couch W, Czerwinski SA, Chumlea WC, Siervogel RM, Towne B. Anatomical patterning of visceral adipose tissue: race, sex, and age variation. Obesity (Silver Spring) 2007;15:2984–93.10.1038/oby.2007.356Suche in Google Scholar PubMed PubMed Central

25. Goodman-Gruen D, Barrett-Connor E. Sex differences in measures of body fat and body fat distribution in the elderly. Am J Epidemiol 1996;143:898–906.10.1093/oxfordjournals.aje.a008833Suche in Google Scholar PubMed

26. Camhi SM, Bray GA, Bouchard C, Greenway FL, Johnson WD, Newton RL, Ravussin E, Ryan DH, Smith SR, Katzmarzyk PT. The relationship of waist circumference and BMI to visceral, subcutaneous, and total body fat: sex and race differences. Obesity (Silver Spring) 2011;19:402–8.10.1038/oby.2010.248Suche in Google Scholar PubMed PubMed Central

27. Lear SA, Humphries KH, Kohli S, Chockalingam A, Frohlich JJ, Birmingham CL. Visceral adipose tissue accumulation differs according to ethnic background: results of the Multicultural Community Health Assessment Trial (M-CHAT). Am J Clin Nutr 2007;86:353–9.10.1093/ajcn/86.2.353Suche in Google Scholar PubMed

28. Chen X, McClusky R, Chen J, Beaven SW, Tontonoz P, Arnold AP, Reue K. The number of x chromosomes causes sex differences in adiposity in mice. PLoS Genet 2012;8:e1002709.10.1371/journal.pgen.1002709Suche in Google Scholar PubMed PubMed Central

29. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Marco CC, McKee LJ, Bauer TL, Caro JF. Serum immunoreactive leptin concentrations in normal-weight and obese humans. N Engl J Med 1996;334:292–5.10.1056/NEJM199602013340503Suche in Google Scholar PubMed

30. Martin SS, Qasim A, Reilly MP. Leptin resistance: a possible interface of inflammation and metabolism in obesity-related cardiovascular disease. J Am Coll Cardiol 2008;52:1201–10.10.1016/j.jacc.2008.05.060Suche in Google Scholar PubMed PubMed Central

31. Yamagishi SI, Edelstein D, Du XL, Kaneda Y, Guzmán M, Brownlee M. Leptin induces mitochondrial superoxide production and monocyte chemoattractant protein-1 expression in aortic endothelial cells by increasing fatty acid oxidation via protein kinase A. J Biol Chem 2003;276:25096–100.10.1074/jbc.M007383200Suche in Google Scholar PubMed

32. O’Rourke L, Gronning LM, Yeman SJ, Shepherd PR. Glucose-dependent regulation of cholesterol ester metabolism in macrophages by insulin and leptin. J Biol Chem 2002;277:42557–62.10.1074/jbc.M202151200Suche in Google Scholar PubMed

33. Qasim A, Mehta N, Tadesse MG, Wolfe ML, Rhodes T, Girman G, Reilly MP. Adipokines, insulin resistance and coronary artery calcification. J Am Coll Cardiol 2008;52:231–6.10.1016/j.jacc.2008.04.016Suche in Google Scholar PubMed PubMed Central

34. Singh P, Hoffmann M, Wolk R, Shamsuzzaman AS, Somers VK. Leptin induces C-reactive protein expression in vascular endothelial cells. Arterioscler Thromb Vasc Biol 2008;27:e302–7.10.1161/ATVBAHA.107.148353Suche in Google Scholar PubMed

35. Wallace AM, Mc Mahon AD, Pacjard CJ, Kelly A, Shepherd J, Graw A, Sattar N. Plasma leptin and the risk of cardiovascular disease in the West of Scotland Coronary Prevention Study (WOSCOPS). Circulation 2001;104:3052–6.10.1161/hc5001.101061Suche in Google Scholar PubMed

36. Motoshima H, Wu X, Sinha MK, Hardy VE, Rosato EL, Barbot DJ, Rosato FE, Goldstein BJ. Differential regulation of adiponectin secretion from cultured human omental and subcutaneous adipocytes; effects of insulin and rosiglitazone. J Clin Endocrinol Metab 2002;87:5662–7.10.1210/jc.2002-020635Suche in Google Scholar PubMed

37. Pajvani UB, Du X, Combs TP, Berg AH, Rajala MW, Schulthess T, Engel J, Brownlee M, Scherer PE. Structure-function studies of the adipocytes-secreted hormone Acrp30/adiponectin. Implications for metabolic regulation and bioactivity. J Biol Chem 2003;278:9073–85.10.1074/jbc.M207198200Suche in Google Scholar PubMed

38. Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C, Reitman ML, Kagechika H, Shudio K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T. The fat-derived hormone adiponectin reverses insulin resistance associated with body lipoatrophy and obesity. Nat Med 2001;7:941–6.10.1038/90984Suche in Google Scholar PubMed

39. Basu R, Pajvani UB, Rizza RA, Scherer PE. Selective downregulation of the high molecular weight form of adiponectin in hyperinsulinemia and in type 2 diabetes: differential regulation from nondiabetic subjects. Diabetes 2007;56:2174–7.10.2337/db07-0185Suche in Google Scholar PubMed

40. Hara K, Horikoshi M, Yamauchi T, Yago Y, Miyazaki O, Ebinuma H, Imai Y, Nagai R, Kadowaki T. Measurement of the high-molecular weight form of adiponectin in plasma is useful for the prediction of insulin resistance and metabolic syndrome. Diabetes Care 2009;29:1357–62.10.2337/dc05-1801Suche in Google Scholar PubMed

41. Ouchi N, Kihara S, Arita Y, Nishida M, Matsuyama A, Okamoto Y, Ishigami M, Kuriyama H, Kishida H, Nishizawa H, Hotta K, Muraguchi M, Ohmoto Y, Yamashita S, Funahashi T, Matsuzawa Y. Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation 2001;103:1057–63.10.1161/01.CIR.103.8.1057Suche in Google Scholar

42. Tan KC, Xu A, Chow WS, Lam MC, Ai VH, Tam SG, Lam KL. Hypoadiponectinemia is associated with impaired endothelium-dependent vasodilation. J Clin Endocrinol Metab 2004;89:765–9.10.1210/jc.2003-031012Suche in Google Scholar

43. Fasshauer M, Klein J, Neumann S, Eszlinger M, Paschke R. Hormonal regulation of adiponectin gene expression in 3T3-L1 adipocytes. Biochem Biophys Res Commun 2002;290:1084–9.10.1006/bbrc.2001.6307Suche in Google Scholar

44. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS, Lazar MA. The hormone resistin links obesity to diabetes. Nature 2001;409:307–12.10.1038/35053000Suche in Google Scholar

45. Patel L, Buckels AC, Kinghorn IJ, Murdock PR, Holbrook JD, Plumpton CD, Macphee CH, Smith SA. Resistin is expressed in human macrophages and directly regulates by PPARγ activators. Biochem Biophys Res Commun 2003;300:472–6.10.1016/S0006-291X(02)02841-3Suche in Google Scholar

46. Ukkola O. Resistin – a mediator of obesityassociated insulin resistance or an innocent bystander? Eur J Endocrinol 2002;147:571–4.10.1530/eje.0.1470571Suche in Google Scholar PubMed

47. Calabro P, Samudio I, Willerson JT, Yeh ET. Resistin promotes smooth muscle cell proliferation through activation of extracellular signal-regulated kinase 1/2 and phosphatidylinositol 3-kinase pathways. Circulation 2004;110:3335–40.10.1161/01.CIR.0000147825.97879.E7Suche in Google Scholar PubMed

48. Kawanami D, Maemura K, Takeda N, Harada T, Nojiri T, Imai Y, Manabe I, Utsonomiya K, Nagai R. Direct reciprocal effects of resistin and adiponectin on vascular endothelial cells: a new insight into adipocytokine-endothelial cell interactions. Biochem Biophys Res Commun 2004;314:415–9.10.1016/j.bbrc.2003.12.104Suche in Google Scholar PubMed

49. Meilly MP, Lehrke M, Wolfe ML, Rohatgi A, Lazar MA, Rader DJ. Resistin is an inflammatory marker of atherosclerosis in humans. Circulation 2005;11:932–9.Suche in Google Scholar

50. McManus DD, Lyass A, Ingelsson E, Massaro JM, Meigs JB, Aragam J, Benjamin EJ, Vasan RS. Relations of circulating resistin and adiponectin and cardiac structure and function: The Framingham Offspring Study. Obesity (Silver Spring) 2012;20:1882–6.10.1038/oby.2011.32Suche in Google Scholar PubMed PubMed Central

51. Frankel DS, Vesan RS, D’Agostino RB, Benjamin EJ, Levy D, Wang TJ, Meigs JB. Resistin, adiponectin, and risk of heart failure: The Framingham Offspring Study. J Am Coll Cardiol 2009;53:754–62.10.1016/j.jacc.2008.07.073Suche in Google Scholar PubMed PubMed Central

52. Weikert C, Westphal S, Berger K, Dierkes J, Möhlig M, Spranger J, Rimm EB, Willich SN, Boeing H, Pischon T. Plasma resistin levels and risk of myocardial infarction and ischemic stroke. J Clin Endocrinol Metab 2008;93:2647–53.10.1210/jc.2007-2735Suche in Google Scholar PubMed

53. Rajpathak SN, Kaplan RC, Wassertheil-Smoller S, Cushman M, Rohan TE, Mc-Ginn AP, Wang T, Strickler HD, Scherer PE, Mackey R, Curb D, Ho GY. Resistin, but not adiponectin and leptin, is associated with the risk of ischemic stroke among postmenopausal women: results from the Women’s Health Initiative. Stroke 2011;42:1813–20.10.1161/STROKEAHA.110.607853Suche in Google Scholar

54. Hotamisligil G, Arner P, Caro J, Atkinson R, Spiegelman B. Increased adipose tissue expression of tumor necrosis factor-α in human obesity and insulin resistance. J Clin Invest 1995;95:2409–15.10.1172/JCI117936Suche in Google Scholar

55. Yudkin JS, Eringa E, Stehouwer CD. ‘Vasocrine’ signaling from perivascular fat: a mechanism linking insulin resistance to vascular disease. Lancet 2005;365:1817–20.10.1016/S0140-6736(05)66585-3Suche in Google Scholar

56. Ross R. Atherosclerosis: an inflammatory disease. N Engl J Med 1999;340:115–26.10.1056/NEJM199901143400207Suche in Google Scholar

57. Vozarova B, Weyer C, Hanson K, Tataranni PA, Bogardus C, Pratley RE. Circulating IL-6 in relation to adiposity, insulin action and insulin secretion. Obes Res 2001;9:414–7.10.1038/oby.2001.54Suche in Google Scholar

58. Fasshauer M, Paschke R. Regulation of adipocytokines and insulin resistance. Diabetologia 2003;46:1594–603.10.1007/s00125-003-1228-zSuche in Google Scholar

59. Bastard JP, Jardel C, Bruckett E, Blondy P, Capeau J, Laville M, Vidal H, Hainque B. Elevated levels of interleukin-6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss. J Clin Endocrinol Metab 2000;85:3338–42.Suche in Google Scholar

60. Yudkin JS, Kumari M, Humphries SE, Mohamed-Ali V. Inflammation, obesity, stress and coronary heart disease: is interleukin-6 the link? Atherosclerosis 1999;148:209–14.10.1016/S0021-9150(99)00463-3Suche in Google Scholar

61. Chrousos GP. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N Engl J Med 1995;332: 1351–62.10.1056/NEJM199505183322008Suche in Google Scholar

62. Harris TB, Ferrucci L, Tracy RP, Corti MC, Wacholder S, Ettinger WH Jr, Heimowitz H, Cohen HJ, Wallace R. Associations of elevated interleukin-6 and C-reactive protein levels with mortality in the elderly. Am J Med 1999;106:506–12.10.1016/S0002-9343(99)00066-2Suche in Google Scholar

63. Liuzzo G, Baisucci LM, Gallimore JR, Caligiuri G, Buffon A, Rebuzzi AG, Pepys MB, Maseri A. Enhanced inflammatory response in patients with preinfarction unstable angina. J Am Coll Cardiol 1999;34:1696–703.10.1016/S0735-1097(99)00432-5Suche in Google Scholar

64. Kyrou I, Tsigos C. Stress mechanisms and metabolic complications. Horm Metab Res 2007;39:430–8.10.1055/s-2007-981462Suche in Google Scholar

65. Carter CS. Developmental consequences of oxytocin. Physiol Behav 2003;79:383–97.10.1016/S0031-9384(03)00151-3Suche in Google Scholar

66. Ayala-Sumuano JT, Velez-delValle C, Beltran-Langarica A, Marsch-Moreno M, Hernandez-Mosqueira C, Kuri-Harcuch W. Glucocorticoid paradoxically recruits adipose progenitors and impairs lipid homeostasis and glucose transport in mature adipocytes. Sci Rep. 2013;3:2573.10.1038/srep02573Suche in Google Scholar

67. Diaz-Velasquez CE, Castro-Munozledo F, Kuri-Harcuch W. Staurosporine rapidly commits 3T3-F442A cells to the formation of adipocytes by activation of GSK-3beta and mobilization of calcium. J Cell Biochem 2008;105:147–57.10.1002/jcb.21810Suche in Google Scholar

68. Ayala-Sumuano JT, Velez-Delvalle C, Beltrán-Langarica A, Marsch-Moreno M, Cerbón-Solorzano J, Kuri-Harcuch W. Srebf1a is a key regulator of transcriptional control for adipogenesis. Sci Rep 2011;1:178.10.1038/srep00178Suche in Google Scholar

69. Rebuffè-Scrive M, Krotkiewski M, Elfverson J, Bjorntorp P. Muscle and adipose tissue morphology and metabolism in Cushing’s syndrome. J Clin Endocrinol Metab 1988;67:1122–28.10.1210/jcem-67-6-1122Suche in Google Scholar

70. Weigensberg MJ, Toledo-Corral CM, Goran MI. Association between the metabolic syndrome and serum cortisol in overweight Latino youth. J Clin Endocrinol Metab 2008;93:1372–8.10.1210/jc.2007-2309Suche in Google Scholar

71. Pasquali R, Cantobelli S, Casimirri F, Capelli M, Bortoluzzi L, Flamia R, Labate AM, Barbara L. The hypothalamic-pituitary-adrenal axis in obese women with different patterns of body fat distribution. J Clin Endocrinol Metab 1993;77:341–6.Suche in Google Scholar

72. Duclos M, Marquez Pereira P, Barat P, Gatta B, Roger P. Increased cortisol bioavailability, abdominal obesity, and the metabolic syndrome in obese women. Obes Res 2005;13: 1157–66.10.1038/oby.2005.137Suche in Google Scholar

73. Rebuffè-Scrive M, Walsh UA, McEwen B, Rodin J. Effect of chronic stress and exogenous glucocorticoids on regional fat distribution and metabolism. Physiol Behav 1992;52:583–90.10.1016/0031-9384(92)90351-2Suche in Google Scholar

74. Epel ES, McEwen B, Seeman T, Matthews K, Castellazzo G, Brownell KD, Bell J, Ickovics JR. Stress and body shape: stress-induced cortisol secretion is consistently greater among women with central fat. Psychosom Med 2000;62:623–32.10.1097/00006842-200009000-00005Suche in Google Scholar PubMed

75. Marniemi J, Kronholm E, Aunola S, Toikka T, Mattlar CE, Koskenvuo M, Ronnemaa T. Visceral fat and psychosocial stress in identical twins discordant for obesity. J Intern Med 2002;251:35–43.10.1046/j.1365-2796.2002.00921.xSuche in Google Scholar

76. Pasquali R, Vicennati V. Activity of the hypothalamic-pituitary-adrenal axis in different obesity phenotypes. Int J Obes Relat Metab Disord 2000;24:S47–9.10.1038/sj.ijo.0801277Suche in Google Scholar

77. Bell J, Ickovics JR. Stress and body shape: stress-induced cortisol secretion is consistently greater among women with central fat. Psychosom Med 2000;62:623–32.10.1097/00006842-200009000-00005Suche in Google Scholar

78. Korbonits M, Trainer PJ, Nelson ML, Howse I, Kopelman PG, Besser GM, Grossman AB, Svec F. Differential stimulation of cortisol and dehydroepiandrosterone levels by food in obese and normal subjects: relation to body fat distribution. Clin Endocrinol [Oxf] 1996;45:699–706.10.1046/j.1365-2265.1996.8550865.xSuche in Google Scholar

79. Vicennati V, Ceroni L, Gagliardi L, Gambineri A, Pasquali R. Comment: response of the hypothalamic-pituitary-adrenocortical axis to high-protein/fat and high-carbohydrate meals in women with different obesity phenotypes. J Clin Endocrinol Metab 2002;87:3984–8.10.1210/jcem.87.8.8718Suche in Google Scholar

80. Pasquali R, Anconetani B, Chattat R, Biscotti M, Spinucci G, Casimirri F, Vicennati V, Carcello A, Labate AM. Hypothalamic-pituitary-adrenal axis activity and its relationship to the autonomic nervous system in women with visceral and subcutaneous obesity: effects of the corticotropin-releasing factor/arginine-vasopressin test and of stress. Metabolism 1996;45:351–6.10.1016/S0026-0495(96)90290-5Suche in Google Scholar

81. Pasquali R, Vicennati V. The abdominal obesity phenotype and insulin resistance are associated with abnormalities of the hypothalamic-pituitaryadrenal axis in humans. Horm Metab Res 2000;32:521–5.10.1055/s-2007-978680Suche in Google Scholar PubMed

82. Pasquali R, Ambrosi B, Armanini D, Cavagnini F, Uberti ED, Del Rio G, de Pergola G, Maccario M, Mantero F, Marugo M, Rotella CM, Vettor R, Study Group on Obesity of the Italian Society of Endocrinology. Cortisol and ACTH response to oral dexamethasone in obesity and effects of sex, body fat distribution, and dexamethasone concentrations: a dose-response study. J Clin Endocrinol Metab 2002;87:166–75.10.1210/jcem.87.1.8158Suche in Google Scholar PubMed

83. Vicennati V, Pasqui F, Cavazza C, Garelli S, Casadio E, di Dalmazi G, Pagotto U, Pasquali R. Cortisol, energy intake, and food frequency in overweight/obese women. Nutrition 2011;27: 677–80.10.1016/j.nut.2010.07.016Suche in Google Scholar PubMed

84. Rosmond R, Dallman MF, Bjorntorp P. Stress-related cortisol secretion in men: relationships with abdominal obesity and endocrine, metabolic and hemodynamic abnormalities. J Clin Endocrinol Metab 1998;83:1853–9.10.1210/jc.83.6.1853Suche in Google Scholar

85. McEwen BS. Protection and damage from acute and chronic stress: allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. Ann N Y Acad Sci 2004;1032:1–7.10.1196/annals.1314.001Suche in Google Scholar

86. McEwen BS, Lasley EN. Allostatic load: when protection gives way to damage. Adv Mind Body Med 2003;19:28.Suche in Google Scholar

87. McEwen BS. Sex, stress and the hippocampus: allostasis, allostatic load and the aging process. Neurobiology in aging 2002;23:921–39.10.1016/S0197-4580(02)00027-1Suche in Google Scholar

88. Epel E, Jimenez S, Brownell K, Stroud L, Stoney C, Niaura R. Are stress eaters at risk for the metabolic syndrome? Ann N Y Acad Sci 2004;1032:208–10.10.1196/annals.1314.022Suche in Google Scholar

89. Adam TC, Epel ES. Stress, eating and the reward system. Physiol Behav 2007;91:449–58.10.1016/j.physbeh.2007.04.011Suche in Google Scholar

90. Pasquali R. The hypothalamic-pituitary-adrenal axis and sex hormones in chronic stress and obesity: pathophysiological and clinical aspects. Ann N Y Acad Sci 2012;1264:20–35.10.1111/j.1749-6632.2012.06569.xSuche in Google Scholar

91. Pasquali R, Vicennati V, Gambineri A, Pagotto U. Sex-dependent role of glucocorticoids and androgens in the pathophisiology of human obesity. Int J Obes 2008;32:1–16.10.1038/ijo.2008.129Suche in Google Scholar

92. Wansink B, Cheney M, Chan N. Exploring comfort food preferences across age and gender. Physiol Behav 2003;79:739–47.10.1016/S0031-9384(03)00203-8Suche in Google Scholar

93. Epel E, Lapidus R, McEwen B, Brownell K. Stress may add bite to appetite in women: a laboratory study of stress-induced cortisol and eating behavior. Psychoneuroendocrino 2001;26:37–49.10.1016/S0306-4530(00)00035-4Suche in Google Scholar

94. Mårin P, Darin N, Amemiya T, Andersson B, Jern S, Björntorp P. Cortisol secretion in relation to body fat distribution in obese premenopausal women. Metabolism 1992;41:882–8.10.1016/0026-0495(92)90171-6Suche in Google Scholar

95. Pasquali R. ACTH and cortisol response to combined corticotropin releasing hormone-arginine vasopressin stimulation in obese males and its relationship to body weight, fat distribution, and parameters of the metabolic syndrome. Int J Obes 1999;23:419–24.10.1038/sj.ijo.0800838Suche in Google Scholar PubMed

96. Stewart PM, Boulton A, Kumar S, Clark PM, Shackleton CH. Cortisol metabolism in human obesity: impaired cortisone → cortisol convertion in subjects with central adiposity. J Clin Endocrinol Metab 1999;84:1022–7.Suche in Google Scholar

97. Anagnostis P, Athyros VG, Tziomalos K, Karagiannis A, Mikhailidis DP. Clinical review: The pathogenetic role of cortisol in the metabolic syndrome: a hypothesis. J Clin Endocrinol Metab 2009;94:2692–701.10.1210/jc.2009-0370Suche in Google Scholar

98. Phillips DI, Barker DJ, Fall CH, Seckl JR, Whorwood CB, Wood PJ, Walker BR. Elevated plasma cortisol concentrations: a link between low birth weight and insulin resistance syndrome? Clin Endocrinol Metab 1998;83:757–60.10.1210/jc.83.3.757Suche in Google Scholar

99. Misra M, Bredella MA, Tsai P, Mendes N, Miller KK, Klibanski A. A lower growth hormone and higher cortisol are associated with greater visceral adiposity, intramyocellular lipids, and insulin resistance in overweight girls. Am J Physiol Endocrinol Metab 2008;295:E385–92.10.1152/ajpendo.00052.2008Suche in Google Scholar

100. Sen Y, Aygun D, Yilmaz E, Ayar A. Children and adolescents with obesity and metabolic syndrome have high circulating cortisol levels. Neuro Endocrinol Lett 2008;29:141–5.Suche in Google Scholar

101. Pereira CD, Azevedo I, Monteiro R, Martins MJ. 11b-Hydroxysteroid dehydrogenase type 1: relevance of its modulation in the pathophysiology of obesity, the metabolic syndrome and type 2 diabetes mellitus. Diab Ob And Metab 2012;14:869–81.10.1111/j.1463-1326.2012.01582.xSuche in Google Scholar

102. Tomlinson JW, Walker EA, Bujalska IJ, Draper N, Lavery GG, Cooper MS, Hewison M, Stewart PM. 11β-Hydroxysteroid dehydrogenase type 1: a tissue specific regulator of glucocorticoid response. Endocr Rev 2004;25:831–66.10.1210/er.2003-0031Suche in Google Scholar

103. Jamieson PM, Chapman KE, Edwards CR, Seckl JR. 11β-Hydroxysteroid dehydrogenase in an exclusive 1b-reductase in primary cultures of rat hepatocytes: effect of psycochemical and hormonal manipulations. Endocrinology 1995;136:4754–61.10.1210/endo.136.11.7588203Suche in Google Scholar

104. Bujalska IJ, Walker EA, Hewison M, Stewart PM. A switch in deydrogenase to reductase activity of 11β-Hydroxysteroid dehydrogenase type 1 upon differentiation of human omental adipose stromal cells. J Clin Endocr Metabol 2002;87:1205–10.Suche in Google Scholar

105. Bujalska IJ, Walker EA, Tomlinson JW, Hewison M, Stewart PM. 11β-Hydroxysteroid dehydrogenase type 1 in differentiating omental human preadipocytes: from deactivation to generation of cortisol. Endocr Res 2002;28:449–61.10.1081/ERC-120016822Suche in Google Scholar

106. Walker BR, Andrew R. Tissue Production of cortisol by 1b-Hydroxysteroid dehydrogenase type 1 and metabolic disease. Ann NY Acad Sci 2006;1083:165–84.10.1196/annals.1367.012Suche in Google Scholar

107. Walker BR, Connacher AA, Lindsay RM, Webb DJ, Edwards CR. Carbenoxolone increases hepatic insulin sensitivity in man: a novel role for 11-oxosteroid reductase in enhancing glucocorticoid receptor activation. J Clin Endocrinol Metab 1995;80:3155–9.Suche in Google Scholar

108. Gathercole LL, Stewart PM. Targeting the prereceptor metabolism of cortisol as a novel therapy in obesity and diabetes. J Steroid Biochem Mol Biol 2010;122:21–7.10.1016/j.jsbmb.2010.03.060Suche in Google Scholar

109. Ozols J. Lumenal orientation and post-translational modifications of the liver microsomal 11b-Hydroxysteroid dehydrogenase. J Biol Chem 1995;270:10360.10.1016/S0021-9258(17)48164-6Suche in Google Scholar

110. Draper N, Walker EA, Bujalska IJ, Tomlinson JW, Chalder SM, Arlt W, Lavery GG, Bedendo O, Ray DW, Laing I, Malunowicz E, White PC, Hewison M, Mason PJ, Connell JM, Shackleton CH, Stewart PM. Mutations in the genes encoding 11β-Hydroxysteroid dehydrogenase type 1 and hexose-6-phosphate-dehydrogenase interact to cause cortisone reductase deficiency. Nat Genet 2003;34:434–9.10.1038/ng1214Suche in Google Scholar PubMed

111. Dzyakanchuk AA, Balázs Z, Nashev LG, Amrein KE, Odermatt A. 11β-Hydroxysteroid dehydrogenase type 1 reductase activity is dependent on a high ratio of NADPH/NAD[+] and is stimulated by extracellular glucose. Mol Cell Endocrinol 2009;301:137–41.10.1016/j.mce.2008.08.009Suche in Google Scholar PubMed

112. Masuzaki H, Paterson J, Shinyama H, Morton NM, Mullins JJ, Seckl JR, Flier JS. A transgenic model of visceral obesity and the metabolic syndrome. Science 2001;294:2166–70.10.1126/science.1066285Suche in Google Scholar PubMed

113. Wamil M, Seckl JR. Inhibition of 11b-Hydroxysteroid dehydrogenase type 1 as a promising therapeutic target. Drug Discov Today 2007;12:504–20.10.1016/j.drudis.2007.06.001Suche in Google Scholar PubMed

114. van Raalte DH, Ouwens DM, Diamant M. Novel insights into glucocorticoid mediated diabetogenic effects: towards expansion of therapeutic options? Eur J Clin Invest 2009;39:81–93.10.1111/j.1365-2362.2008.02067.xSuche in Google Scholar PubMed

115. Morton N. Obesity and corticosteroids: 11beta-hydroxysteroid type 1 as a cause and therapeutic target in metabolic disease. Mol Cell Endocrinol 2010;316:154–64.10.1016/j.mce.2009.09.024Suche in Google Scholar PubMed

116. Masuzaki H, Flier JS. Tissue-specific glucocorticoid reactivating enzyme, 11beta-hydroxysteroid dehydrogenase type 1 [11 beta-HSD1] – a promising drug target for the treatment of metabolic syndrome. Curr Drug Targets Immune Endocr Metabol Disord 2003;3:255–62.10.2174/1568008033340135Suche in Google Scholar PubMed

117. Morton NM, Paterson JM, Masuzaki H, Holmes MC, Staels B, Fievet C, Walker BR, Flier JS, Mullins JJ, Seckl JR. Novel adipose tissue-mediated resistance to diet-induced visceral obesity in 11 beta-hydroxysteroid dehydrogenase type 1-deficient mice. Diabetes 2004;53:931–8.10.2337/diabetes.53.4.931Suche in Google Scholar PubMed

118. Kotelevtsev Y, Holmes MC, Burchell A, Houston PM, Schmoll D, Jamieson P, Best R, Brown R, Edwards CR, Seckl JR, Mullins JJ. 11beta-hydroxysteroid dehydrogenase type 1 knockout mice show attenuated glucocorticoidinducible responses and resist hyperglycemia on obesity or stress. Proc Natl Acad Sci USA 1997;94:14924–9.10.1073/pnas.94.26.14924Suche in Google Scholar PubMed PubMed Central

119. Morton NM, Holmes MC, Fiévet C, Staels B, Tailleux A, Mullins JJ, Seckl JR. Improved lipid and lipoprotein profile, hepatic insulin sensitivity, and glucose tolerance in 11beta-hydroxysteroid dehydrogenase type 1 null mice. J Biol Chem 2001;276:41293–300.10.1074/jbc.M103676200Suche in Google Scholar PubMed

120. Rask E, Olsson T, Söderberg S, Andrew R, Livingstone DE, Johnson O, Walker BR. Tissue-specific dysregulation of cortisol metabolism in human obesity. J Clin Endocrinol Metab 2001;86:1418–21.10.1210/jcem.86.3.7453Suche in Google Scholar

121. Rask E, Walker BR, Söderberg S, Livingstone DE, Eliasson M, Johnson O, Andrew R, Olsson T. Tissue-specific changes in peripheral cortisol metabolism in obese women: increased adipose 11betahydroxysteroid dehydrogenase type 1 activity. J Clin Endocrinol Metab 2002;87:3330–6.Suche in Google Scholar

122. Sandeep TC, Andrew R, Homer NZ, Andrews RC, Smith K, Walker BR. Increased in vivo regeneration of cortisol in adipose tissue in human obesity and effects of the 11beta-hydroxysteroid dehydrogenase type 1 inhibitor carbenoxolone. Diabetes 2005;54:872–9.10.2337/diabetes.54.3.872Suche in Google Scholar

123. Paulmyer-Lacroix O, Boullu S, Oliver C, Alessi MC, Grino M. Expression of the mRNA coding for 11beta-hydroxysteroid dehydrogenase type I in adipose tissue from obese patients: an in situ hybridization study. J Clin Endocrinol Metab 2002;87:2701–5.Suche in Google Scholar

124. Mariniello B, Ronconi V, Rilli S, Bernante P, Boscaro M, Mantero F, Giacchetti G. Adipose tissue 11beta-hydroxysteroid dehydrogenase type I expression in obesity and Cushing’s syndrome. Eur J Endocrinol 2006;155:435–41.10.1530/eje.1.02228Suche in Google Scholar

125. Desbriere R, Vuaroqueaux V, Achard V, Boullu-Ciocca S, Labuhn M, Dutour A, Grino M. 11Beta-hydroxysteroid dehydrogenase type I mRNA is increased in both visceral and subcutaneous adipose tissue of obese patients. Obesity 2006;14:794–8.10.1038/oby.2006.92Suche in Google Scholar

126. Bujalska IJ, Kumar S, Stewart PM. Does central obesity reflect “Cushing’s syndrome of the omentum”? Lancet 1997;349:1210–3.10.1016/S0140-6736(96)11222-8Suche in Google Scholar

127. Tomlinson JW, Sinha B, Bujalska I, Hewison M, Stewart PM. Expression of 11beta-hidroxysteroid dehydrogenase type I in adipose tissue is not increased in human obesity. J Clin Endocrinol Metab 2002;87:5630–5.10.1210/jc.2002-020687Suche in Google Scholar PubMed

128. Tannenbaum BM, Brindley DN, Tannenbaum GS, Dallman MF, McArthur MD, Meaney MJ. High-fat feeding alters both basal and stress-induced hypothalamic-pituitary-adrenal activity in the rat. Am J Physiol 1997;273:E1168–77.10.1152/ajpendo.1997.273.6.E1168Suche in Google Scholar PubMed

129. Stimson RH, Johnstone AM, Homer NZ, Wake DJ, Morton NM, Andrew R, Lobley GE, Walker BR. Dietary macronutrient content alters cortisol metabolism independently of body weight changes in obese men. J Clin Endocrinol Metab 2007;92:4480–4.10.1210/jc.2007-0692Suche in Google Scholar PubMed

130. Berthiaume M, Laplante M, Festuccia W, Gélinas Y, Poulin S, Lalonde J, Joanisse DR, Thieringer R, Deshaies Y. Depot-specific modulation of rat intraabdominal adipose tissue lipid metabolism by pharmacological inhibition of 11β-hydroxysteroid dehydrogenase type 1. Endocrinol 2007;148:2391–7.10.1210/en.2006-1199Suche in Google Scholar PubMed

131. Kanarek RB, Orthen-Gambill N. Differential effects of sucrose, fructose and glucose on carbohydrate-induced obesity in rats. J Nutr 1982;112:1546–54.10.1093/jn/112.8.1546Suche in Google Scholar PubMed

132. Havel P. Dietary fructose: implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolism. Nutr Rev 2005;63:133–57.10.1111/j.1753-4887.2005.tb00132.xSuche in Google Scholar

133. Minehira K, Bettschart V, Vidal H, Vega N, Di Vetta V, Rey V, Schneiter P, Tappy L. Effect of carbohydrate overfeeding on whole body and adipose tissue metabolism in humans. Obes Res 2003;11:1096–103.10.1038/oby.2003.150Suche in Google Scholar PubMed

134. Minehira K, Vega N, Vidal H, Acheson K, Tappy L. Effect of carbohydrate overfeeding on whole body macronutrients metabolism and expression of lipogenic enzymes in adipose tissue of lean and overweight humans. Int J Obes 2004;28:1291–8.10.1038/sj.ijo.0802760Suche in Google Scholar PubMed

135. Reaven GM, Ho H, Hoffman BB. Effects of a fructose-enriched diet on plasma insulin and triglyceride concentration in SHF and WKY rats. Horm Metab Res 1990;22:363–5.10.1055/s-2007-1004922Suche in Google Scholar PubMed

136. London E, Lala G, Berger R, Panzenbeck A, Kohli AA, Renner M, Jackson A, Raynor T, Loya K, Castonguay TW. Sucrose access differentially modifies 11β-hydroxysteroid dehydrogenase-1 and hexose-6-phosphate dehydrogenase message in liver and adipose tissue in rats. J Nutr 2007;137:2616–21.10.1093/jn/137.12.2616Suche in Google Scholar PubMed

137. Quideau S, Deffieux D, Douat-Casassus C, Pouységu L. Plant polyphenols: chemical properties, biological activities, and synthesis. Angew Chem Int Ed Engl 2011;50:586–621.10.1002/anie.201000044Suche in Google Scholar PubMed

138. Xiao ZP, Peng ZY, Peng MJ, Yan WB, Ouyang YZ, Zhu HL. Flavonoids health benefits and their molecular mechanism. Mini Rev Med Chem 2011;11:169–77.10.2174/138955711794519546Suche in Google Scholar PubMed

139. Torres-Piedra M, Ortiz-Andrade R, Villalobos-Molina R, Singh N, Medina-Franco JL, Webster SP, Binnie M, Navarrete-Vázquez G, Estrada-Soto S. A comparative study of flavonoid analogues on streptozotocin-nicotinamide induced diabetic rats: quercetin as a potential antidiabetic agent acting via 11betahydroxysteroid dehydrogenase type 1 inhibition. Eur J Med Chem 2010;45:2606–12.10.1016/j.ejmech.2010.02.049Suche in Google Scholar PubMed

140. Schweizer RA. A rapid screening assay for inhibitors of 11beta-hydroxysteroid dehydrogenases [11beta-HSD]: flavanone selectively inhibits 11beta-HSD1 reductase activity. Mol Cell Endocrinol 2003;212:41–9.10.1016/j.mce.2003.09.027Suche in Google Scholar PubMed

141. Ferruzzi MG. The influence of beverage composition on delivery of phenolic compounds from coffee and tea. Physiol Behav 2010;100:33–41.10.1016/j.physbeh.2010.01.035Suche in Google Scholar PubMed

142. Rustenbeck I. Unconventional antidiabetic agents. Med Monatsschr Pharm 2007;30:131–7.Suche in Google Scholar

143. Van Dam RM. Coffee and type 2 diabetes: from beans to beta-cells. Nutr Metab Cardiovasc Dis 2006;16:69–77.10.1016/j.numecd.2005.10.003Suche in Google Scholar

144. van Dam RM, Feskens EJ. Coffee consumption and risk of type 2 diabetes mellitus. Lancet 2002;360:1477–8.10.1016/S0140-6736(02)11436-XSuche in Google Scholar

145. Van Dam RM. Coffee consumption and risk of type 2 diabetes: a systematic review. J Am Med Assoc 2005;294:97–104.10.1001/jama.294.1.97Suche in Google Scholar PubMed

146. Atanasov AG, Dzyakanchuk AA, Schweizer RA, Nashev LG, Maurer EM, Odermatt A. Coffee inhibits the reactivation of glucocorticoids by 11betahydroxysteroid dehydrogenase type 1: a glucocorticoid connection in the anti-diabetic action of coffee? FEBS Lett 2006;580:4081–5.10.1016/j.febslet.2006.06.046Suche in Google Scholar PubMed

147. Feldeisen SE, Tucker KL. Nutritional strategies in the prevention and treatment of metabolic syndrome. Appl Physiol Nutr Metab 2007;32:46–60.10.1139/h06-101Suche in Google Scholar PubMed

148. Cho GJ, Park HT, Shin JH, Hur JY, Kim YT, Kim SH, Lee KW, Kim T. Calcium intake is inversely associated with metabolic syndrome in postmenopausal women: Korea National Health and Nutrition Survey, 2001 and 2005. Menopause 2009;16:992–7.10.1097/gme.0b013e31819e23cbSuche in Google Scholar PubMed

149. Van Leer EM, Seidell JC, Kromhout D. Dietary calcium, potassium, magnesium and blood pressure in the Netherlands. Int J Epidemiol 1995;24:1117–23.10.1093/ije/24.6.1117Suche in Google Scholar PubMed

150. Yokota K, Kato M, Lister F, Ii H, Hayakawa T, Kikuta T, Kageyama S, Tajima N. Clinical efficacy of magnesium supplementation in patients with type 2 diabetes. J Am Coll Nutr 2004;23:506S–9S.10.1080/07315724.2004.10719390Suche in Google Scholar PubMed

151. Li RS, Nakagawa Y, Nakanishi T, Fujisawa Y, Ohzeki T. Different responsiveness in body weight and hepatic 11beta-hydroxysteroid dehydrogenase [11beta-HSD] type 1 mRNA to 11beta-HSD inhibition by glycyrrhetinic acid treatment in obese and lean zucker rats. Metabolism 2004;53:600–6.10.1016/j.metabol.2003.11.010Suche in Google Scholar PubMed

152. Hollis G, Huber R. 11beta-Hydroxysteroid dehydrogenase type 1 inhibition in type 2 diabetes mellitus. Diabetes Obes Metab 2011;13:1–6.10.1111/j.1463-1326.2010.01305.xSuche in Google Scholar PubMed

153. Andrews RC, Rooyackers O, Walker BR. Effects of the 11 betahydroxysteroid dehydrogenase inhibitor carbenoxolone on insulin sensitivity in men with type 2 diabetes. J Clin Endocrinol Metab 2003;88:285–91.10.1210/jc.2002-021194Suche in Google Scholar

154. Edwards CR, Stewart PM, Burt D, Brett L, McIntyre MA, Sutanto WS, de Kloet ER, Monder C. Localization of 11-beta-hydroxysteroid dehydrogenase-tissue specific protector of the mineralcorticoid receptor. Lancet 1988;ii:986–9.10.1016/S0140-6736(88)90742-8Suche in Google Scholar

155. Stewart PM, Wallace AM, Valentino R, Burt D, Shackleton CH, Edwards CR. Mineralocorticoid activity of liquorice: 11-beta-hydroxysteroid dehydrogenase deficiency comes of age. Lancet 1987;ii:821–4.10.1016/S0140-6736(87)91014-2Suche in Google Scholar

156. Ferrari P. The role of 11beta-hydroxysteroid dehydrogenase type 2 in human hypertension. Biochim Biophys Acta 2010;1802:1178–87.10.1016/j.bbadis.2009.10.017Suche in Google Scholar PubMed

157. Palermo M, Quinkler M, Stewart PM. Apparent mineralocorticoid excess syndrome: an overview. Arq Bras Endocrinol Metabol 2004;48:687–96.10.1590/S0004-27302004000500015Suche in Google Scholar

158. Courtney R, Stewart PM, Toh M, Ndongo MN, Calle RA, Hirshberg B. Modulation of 11beta-hydroxysteroid dehydrogenase [11betaHSD] activity biomarkers and pharmacokinetics of PF-00915275, a selective 11betaHSD1 inhibitor. J Clin Endocrinol Metab 2008;93:550–6.10.1210/jc.2007-1912Suche in Google Scholar PubMed

159. Rosenstock J, Banarer S, Fonseca VA, Inzucchi SE, Sun W, Yao W, Hollis G, Flores R, Levy R, Williams WV, Seckl JR, Huber R. The 11-beta-hydroxysteroid dehydrogenase type 1 inhibitor INCB13739 improves hyperglycemia in patients with type 2 diabetes inadequately controlled by metformin omonotherapy. Diabetes Care 2010;33:1516–22.10.2337/dc09-2315Suche in Google Scholar PubMed PubMed Central

160. Leal-Cerro A, Considine RV, Peino R, Venegas E, Astorga R, Casanueva FF, Dieguez C. Serum immunoreactive-leptin levels are increased in patients with Cushing’s syndrome. Horm Metab Res 1996;28:711–13.10.1055/s-2007-979884Suche in Google Scholar PubMed

161. Weise M, Abad V, Considine RV, Nieman L, Rother KI. Leptin secretion in Cushing’s syndrome: preservation of diurnal rhythm and absent response to corticotrophin-releasing hormone. J Clin Endocrinol Metab 1999;84:2075–9.Suche in Google Scholar

162. Van Harmelen V, Reynisdottir S, Eriksson P, Thorne A, Hoffstedt J, Lonqvist F, Arner P. Leptin secretion and from subcutaneous and visceral adipose tissue in women. Diabetes 1998;47:913–7.10.2337/diabetes.47.6.913Suche in Google Scholar PubMed

163. Widjaja A, Schurmeyer TH, Von zur Muhlen A, Brabant G. Determinants of serum leptin levels in Cushing’s syndrome. J Clin Endocrinol Metab 1998;83:600–3.Suche in Google Scholar

164. Grottoli S, Gauna C, Tassone F, Aimaretti G, Corneli G, Wu Z, Strasburger CJ, Diegeuez C, Casanueva FF, Ghigo E, Maccario M. Both fasting-induced leptin reduction and GH increase are blunted in Cushing’s syndrome and in simple obesity. Clin Endocrinol 2003;58:220–2.10.1046/j.1365-2265.2003.01699.xSuche in Google Scholar PubMed

165. Boden G, Chen X, Kolaczynski JW, Polansky M. Effects of prolonged hyperinsulinemia on serum leptin in normal human subjects. J Clin Invest 1997;100:1107–13.10.1172/JCI119621Suche in Google Scholar PubMed PubMed Central

166. Carantoni M, Abbasi F, Azhar S, Schaaf P, Reaven GM. Can changes in plasma insulin concentration explain the variability in leptin response to weight loss in obese women with normal glucose tolerance? J Clin Endocrinol Metab 1999;84:869–72.10.1210/jc.84.3.869Suche in Google Scholar

167. Havel PJ, Kasim-Karakas S, Mueller W, Johnson PR, Gingerich RL, Stern JS. Relationship of plasma leptin to plasma insulin and adiposity in normal weight and overweight women: effects of dietary fat content and sustained weight loss. J Clin Endocrinol Metab 1996;81:4406–13.Suche in Google Scholar

168. Fallo F, Scarda A, Sonino N, Paoletta A, Boscaro M, Pagano C, Federspil G, Vettor R. Effect of glucocorticoids on adiponectin: a study in healthy subjects and in Cushing’s syndrome. Eur J Endocrinol 2004;150:339–44.10.1530/eje.0.1500339Suche in Google Scholar PubMed

169. Kern PA, Di Gregorio GB, Lu T, Rassouli N, Ranganathan G. Adiponectin expression from human adipose tissue: relation to obesity, insulin resistance, and tumor necrosis factor – expression. Diabetes 2003;52:1779–85.10.2337/diabetes.52.7.1779Suche in Google Scholar PubMed

170. Libè R, Morpugo PS, Cappiello V, Maffini A, Bondioni S, Locatelli M, Zavanone M, Beck-Peccoz P, Spada A. Ghrelin and adiponectin in patients with Cushing’s disease before and after successful transsphenoidal surgery. Clin Endocrinol 2005;62:30–6.10.1111/j.1365-2265.2004.02169.xSuche in Google Scholar PubMed

171. Barahona MJ, Sucunza N, Resmini E, Fernandez-Real JM, Ricart W, Moreno-Navarrete JM, Puig T, Farrerons J, Webb SM. Persistent body fat mass and inflammatory marker increase after long-term cure of Cushing’s syndrome. J Clin Endocrinol Metab 2009;94:3365–71.10.1210/jc.2009-0766Suche in Google Scholar PubMed

172. Kresk M, Silha JV, Jezkova J, Hana V, Marek J, Weiss V, Stepan JJ, Murphy LJ. Adipokine levels in Cushing’s syndrome; elevated resistin levels in female patients with Cushing’s syndrome. Clin Endocrinol 2004;60:350–7.10.1111/j.1365-2265.2003.01987.xSuche in Google Scholar PubMed

173. Ermetici F, Malavazos AE, Corbetta S, Morricone L, Dall’Asta C, Corsi MM, Ambrosi B. Adipokine levels and cardiovascular risk in patients with adrenal incidentaloma. Metabolism 2007;56:686–92.10.1016/j.metabol.2006.12.018Suche in Google Scholar PubMed

174. Ueland T, Kristo C, Godang K, Aukrust P, Bollerslev J. Interleukin-1 receptor antagonist is associated with fat distribution in endogenous Cushing’s syndrome: a longitudinal study. J Clin Endocrinol Metab 2003;88:1492–6.10.1210/jc.2002-021030Suche in Google Scholar PubMed

175. Papanicolau DA, Tsigos C, Oldfield EH, Chrousos GP. Acute glucocorticoid deficiency is associated with plasma elevations of interleukin-6: does the latter participate in the symptomatology of the steroid withdrawal syndrome and adrenal insufficiency? J Clin Endocrinol Metab 1996;81:2303–6.10.1210/jcem.81.6.8964868Suche in Google Scholar PubMed

176. Kristo C, Godang K, Ueland T, Lien E, Aukrust P, Froland SS, Bollerslev J. Raised serum levels of interleukin-8 and interleukin-18 in relation to bone metabolism in endogenous Cushing’s syndrome. Eur J Endocrinol 2002;146:389–95.10.1530/eje.0.1460389Suche in Google Scholar PubMed

177. Merola B, Longobardi S, Colao A, Di Somma C, Ferone D, Di Rella F, Pivonello R, Covelli V, Annunziato L, Lombardi G. Tumor necrosis factor-α increases after corticotropin-releasing hormone administration in Cushing’s disease. In vivo and in vitro studies. Neuroendocrinology 1996;64: 393–7.10.1159/000127142Suche in Google Scholar PubMed

Received: 2013-12-18
Accepted: 2014-1-17
Published Online: 2014-3-11
Published in Print: 2014-2-1

©2014 by Walter de Gruyter Berlin/Boston

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hmbci-2013-0068/html?lang=de
Button zum nach oben scrollen