Abstract
Obesity is a leading contributor to morbidity and mortality worldwide. Chronic overnutrition and lack of physical activity result in excess deposition of adipose tissue and insulin resistance, which plays a key role in the pathophysiology of type 2 diabetes mellitus (DM2) and associated cardiovascular disease (CVD). Dysfunctional adipose tissue in obese individuals is characterized by chronic low-grade inflammation that spreads to several tissues as well as systemically and is able to impact the cardiovascular system, resulting in both functional and anatomical abnormalities. Inflammation is characterized by abnormalities in both innate and adaptive immunity including adipose tissue infiltration by CD4+ T lymphocytes, pro-inflammatory (M1) macrophages, and increased production of adipokines. The renin-angiotensin-aldosterone system (RAAS) is inappropriately activated in adipose tissue and contributes to originating and perpetuating inflammation and excessive oxidative stress by increasing production of reactive oxygen species (ROS). In turn, ROS and pro-inflammatory adipokines cause resistance to the metabolic actions of insulin in several tissues including cardiovascular and adipose tissue. Insulin resistance in cardiovascular tissues is characterized by impaired vascular reactivity and abnormal cardiac contractility as well as hypertrophy, fibrosis, and remodeling, which ultimately result in CVD. In this context, weight loss through caloric restriction, regular physical activity, and surgery as well as pharmacologic RAAS blockade all play a key role in reducing obesity-related cardiovascular morbidity and mortality.
This research was supported by the National Institutes of Health (R01-HL73101 and R01-HL1079100) and Veterans Affairs Merit System 0018.
References
1. Berg AH, Scherer PE. Adipose tissue, inflammation, and cardiovascular disease. Circ Res 2005;96:939–49.10.1161/01.RES.0000163635.62927.34Suche in Google Scholar PubMed
2. Lastra G, Manrique C, Sowers J. Obesity, cardiometabolic syndrome, and chronic kidney disease: the weight of the evidence. Adv Chronic Kidney Dis 2006;13:365–73.10.1053/j.ackd.2006.07.011Suche in Google Scholar PubMed
3. Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, Goronzy J, Weyand C, Harrison DG. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med 2007;204:2449–60.10.1084/jem.20070657Suche in Google Scholar PubMed PubMed Central
4. Narayan K, Boyle J, Thompson T, Sorensen S, Williamson D. Lifetime risk for diabetes mellitus in the United States. J Am Med Assoc 2003;290:1884–90.10.1001/jama.290.14.1884Suche in Google Scholar PubMed
5. Lastra-Gonzalez G, Manrique C, Govindarajan G, Whaley-Connell A, Sowers J. Insights into the emerging cardiometabolic prevention and management of diabetes mellitus. Expert Opin Pharmacother 2005;6:2209–21.10.1517/14656566.6.13.2209Suche in Google Scholar PubMed
6. Kintscher U, Hartge M, Hess K, Foryst-Ludwig A, Clemenz M, Wabitsch M, Fischer-Posovszky P. Barth TFE, Dragun D, Skurk T, Hauner H, Blüher M, Unger T, Wolf A-M, Knippschild U, Hombach V, Marx N. T-lymphocyte infiltration in visceral adipose tissue: a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance. Arterioscler Thromb Vasc Biol 2008;28:1304–10.10.1161/ATVBAHA.108.165100Suche in Google Scholar PubMed
7. Wellen K, Hotamisligil G. Obesity-induced inflammatory changes in adipose tissue. J Clin Invest 2003;112:1785–8.10.1172/JCI20514Suche in Google Scholar PubMed PubMed Central
8. Charriere G, Cousin B, Arnaud E, Andre M, Bacou F, Penicaud L, Casteilla L. Preadipocyte conversion to macrophage. Evidence of plasticity. J Biol Chem 2003;278:9850–5.Suche in Google Scholar
9. Engeli S, Negrel R, Sharma AM. Physiology and pathophysiology of the adipose tissue renin-angiotensin system. Hypertension 2000;35:1270–7.10.1161/01.HYP.35.6.1270Suche in Google Scholar PubMed
10. Schling P, Loffler G. Effects of angiotensin II on adipose conversion and expression of genes of the renin-angiotensin system in human preadipocytes. Horm Metab Res 2001;33:189–95.10.1055/s-2001-14951Suche in Google Scholar PubMed
11. Briones AM, Nguyen Dinh Cat A, Callera GE, Yogi A, Burger D, He Y, Correa JW, Gagnon AM, Gomez-Sanchez CE, Gomez-Sanchez EP, Sorisky A, Ooi TC, Ruzicka M, Burns KD, Touyz RM. Adipocytes produce aldosterone through calcineurin-dependent signaling pathways: implications in diabetes mellitus-associated obesity and vascular dysfunction. Hypertension 2012;59:1069–78.10.1161/HYPERTENSIONAHA.111.190223Suche in Google Scholar PubMed
12. Mathieu P, Poirier P, Pibarot P, Lemieux I, Despres J-P. Visceral obesity: the link among inflammation, hypertension, and cardiovascular disease. Hypertension 2009;53:577–84.10.1161/HYPERTENSIONAHA.108.110320Suche in Google Scholar PubMed
13. Pantanetti P, Garrapa G, Mantero F, Boscaro M, Faloia E, Venarucci D. Adipose tissue as an endocrine organ? A review of recent data related to cardiovascular complications of endocrine dysfunctions. Clin Exp Hypertens 2004;26:387–98.10.1081/CEH-120034142Suche in Google Scholar PubMed
14. Caprio M, Feve B, Claes A, Viengchareun S, Lombes M, Zennaro M-C. Pivotal role of the mineralocorticoid receptor in corticosteroid-induced adipogenesis. FASEB J 2007;21:2185–94.10.1096/fj.06-7970comSuche in Google Scholar PubMed
15. Kalupahana N, Massiera F, Quignard-Boulange A, Ailhaud G, Voy B, Wasserman D, Moustaid-Moussa N. Overproduction of angiotensinogen from adipose tissue induces adipose inflammation, glucose intolerance, and insulin resistance. Obesity (Silver Spring) 2012;20:48–56.10.1038/oby.2011.299Suche in Google Scholar PubMed PubMed Central
16. Cooper SA, Whaley-Connell A, Habibi J, Wei Y, Lastra G, Manrique C, Stas S, Sowers JR. Renin-angiotensin-aldosterone system and oxidative stress in cardiovascular insulin resistance. Am J Physiol Heart Circ Physiol 2007;293:H2009–23.10.1152/ajpheart.00522.2007Suche in Google Scholar PubMed
17. Shao J, Nangaku M, Miyata T, Inagi R, Yamada K, Kurokawa K, Fujita T. Imbalance of T-cell subsets in angiotensin II-infused hypertensive rats with kidney injury. Hypertension 2003;42:31–8.10.1161/01.HYP.0000075082.06183.4ESuche in Google Scholar PubMed
18. Eller K, Kirsch A, Wolf AM, Sopper S, Tagwerker A, Stanzl U, Wolf D, Patsch W, Rosenkranz AR, Eller P. Potential role of regulatory t cells in reversing obesity-linked insulin resistance and diabetic nephropathy. Diabetes 2011;60:2954–62.10.2337/db11-0358Suche in Google Scholar PubMed PubMed Central
19. Sowers JR. Diabetes mellitus and vascular disease. Hypertension 2013;61:943–7.10.1161/HYPERTENSIONAHA.111.00612Suche in Google Scholar PubMed PubMed Central
20. Barhoumi T, Kasal DA, Li MW, Shbat L, Laurant P, Neves MF, Paradis P, Schiffrin EL. T regulatory lymphocytes prevent angiotensin ii-induced hypertension and vascular injury. Hypertension 2011;57:469–76.10.1161/HYPERTENSIONAHA.110.162941Suche in Google Scholar PubMed
21. Ilan Y, Maron R, Tukpah, Maioli TU, Murugaiyan G, Yang K, Wu HY, Weiner HL. Induction of regulatory T cells decreases adipose inflammation and alleviates insulin resistance in ob/ob mice. Proc Natl Acad Sci USA 2010;107:9765–70.10.1073/pnas.0908771107Suche in Google Scholar PubMed PubMed Central
22. Sakaguchi S, Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T. Regulatory T cells: how do they suppress immune responses? Int Immunol 2009;21:1105–11.10.1093/intimm/dxp095Suche in Google Scholar PubMed
23. Kasal DA, Barhoumi T, Li MW, Yamamoto N, Zdanovich E, Rehman A, Neves MF, Laurant P, Paradis P, Schiffrin EL. T regulatory lymphocytes prevent aldosterone-induced vascular injury. Hypertension 2012;59:324–30.10.1161/HYPERTENSIONAHA.111.181123Suche in Google Scholar PubMed
24. Chen X-L, Tummala PE, Olbrych MT, Alexander RW, Medford RM, Angiotensin II induces monocyte chemoattractant protein-1 gene expression in rat vascular smooth muscle cells. Circ Res 1998;83:952–9.10.1161/01.RES.83.9.952Suche in Google Scholar
25. Rocha R, Rudolph AE, Frierdich GE, Nachowiak DA, Kekec BK, Blomme EAG, McMahon EG, Delyani JA. Aldosterone induces a vascular inflammatory phenotype in the rat heart. Am J Physiol Heart Circ Physiol 2002;283:H1802–10.10.1152/ajpheart.01096.2001Suche in Google Scholar PubMed
26. Lastra G, Whaley-Connell A, Manrique C, Habibi J, Gutweiler AA, Appesh L, Hayden MR, Wei Y, Ferrario C, Sowers JR. Low-dose spironolactone reduces reactive oxygen species generation and improves insulin-stimulated glucose transport in skeletal muscle in the TG(mRen2)27 rat. Am J Physiol Endocrinol Metab 2008;295:E110–6.10.1152/ajpendo.00258.2007Suche in Google Scholar PubMed PubMed Central
27. Brown NJ. Aldosterone and Vascular Inflammation. Hypertension 2008;51:161–7.10.1161/HYPERTENSIONAHA.107.095489Suche in Google Scholar PubMed
28. Okamura A, Rakugi H, Ohishi M, Yanagitani Y, Takiuchi S, Moriguchi K, Fennessy P, Higaki J, Ogihara T. Upregulation of renin-angiotensin system during differentiation of monocytes to macrophages. J Hypertens 1999;17:537–45.10.1097/00004872-199917040-00012Suche in Google Scholar PubMed
29. Calo LA, Zaghetto F, Pagnin E, Davis PA, de Mozzi P, Sartorato P, Martire G, Fiore C, Armanini D. Effect of aldosterone and glycyrrhetinic acid on the protein expression of PAI-1 and p22phox in human mononuclear leukocytes. J Clin Endocrinol Metab 2004;89:1973–6.10.1210/jc.2003-031545Suche in Google Scholar PubMed
30. Lastra G, Habibi J, Whaley-Connell AT, Manrique C, Hayden MR, Rehmer J, Patel K, Ferrario C, Sowers JR. Direct renin inhibition improves systemic insulin resistance and skeletal muscle glucose transport in a transgenic rodent model of tissue renin overexpression. Endocrinology 2009;150:2561–8.10.1210/en.2008-1391Suche in Google Scholar PubMed PubMed Central
31. Blendea MC, Jacobs D, Stump CS, McFarlane SI, Ogrin C, Bahtyiar G, Stas S, Kumar P, Sha Q, Ferrario CM, Sowers JR. Abrogation of oxidative stress improves insulin sensitivity in the Ren-2 rat model of tissue angiotensin II overexpression. Am J Physiol Endocrinol Metab 2005;288:E353–9.10.1152/ajpendo.00402.2004Suche in Google Scholar PubMed
32. Luther J, Luo P, Kreger M, Brissova M, Dai C, Whitfield T, Kim H, Wasserman D, Powers A, Brown N. Aldosterone decreases glucose-stimulated insulin secretion in vivo in mice and in murine islets. Diabetologia 2011;54:2152–63.10.1007/s00125-011-2158-9Suche in Google Scholar
33. Hitomi H, Kiyomoto H, Nishiyama A, Hara T, Moriwaki K, Kaifu K, Ihara G, Fujita Y, Ugawa T, Kohno M. Aldosterone suppresses insulin signaling via the downregulation of insulin receptor substrate-1 in vascular smooth muscle cells. Hypertension 2007;50:750–5.10.1161/HYPERTENSIONAHA.107.093955Suche in Google Scholar
34. Taniyama Y, Hitomi H, Shah A, Alexander RW, Griendling KK. Mechanisms of reactive oxygen species-dependent downregulation of insulin receptor substrate-1 by angiotensin II. Arterioscler Thromb Vasc Biol 2005;25:1142–7.10.1161/01.ATV.0000164313.17167.dfSuche in Google Scholar
35. Pulakat L, Demarco V, Whaley-Connell A, Sowers J. The impact of overnutrition on insulin metabolic signaling in the heart and the kidney. Cardiorenal Med 2011;1:102–12.10.1159/000327140Suche in Google Scholar
36. Pulakat L, DeMarco VG, Ardhanari S, Chockalingam A, Gul R, Whaley-Connell A, Sowers JR. Adaptive mechanisms to compensate for overnutrition-induced cardiovascular abnormalities. Am J Physiol Regul Integr Comp Physiol 2011;301:R885–95.10.1152/ajpregu.00316.2011Suche in Google Scholar
37. Lastra-Lastra G, Sowers JR, Restrepo-Erazo K, Manrique-Acevedo C, Lastra-González G. Role of aldosterone and angiotensin II in insulin resistance: an update. Clin Endocrinol 2009;71:1–6.10.1111/j.1365-2265.2008.03498.xSuche in Google Scholar
38. Campión J, Maestro B, Mata FS, Dávila N, Carranza MC, Calle C. Inhibition by aldosterone of insulin receptor mRNA levels and insulin binding in U-937 human promonocytic cells. J Steroid Biochem Mol Biol 1999;70:211–8.10.1016/S0960-0760(99)00117-XSuche in Google Scholar
39. Catena C, Lapenna R, Baroselli S, Nadalini E, Colussi G, Novello M, Favret G, Melis A, Cavarape A, Sechi LA. Insulin sensitivity in patients with primary aldosteronism: a follow-up study. J Clin Endocrinol Metab 2006;91:3457–63.10.1210/jc.2006-0736Suche in Google Scholar PubMed
40. Fallo F, Veglio F, Bertello C, Sonino N, Della Mea P, Ermani M, Rabbia F, Federspil G, Mulatero P. Prevalence and characteristics of the metabolic syndrome in primary aldosteronism. J Clin Endocrinol Metab 2006;91:454–9.10.1210/jc.2005-1733Suche in Google Scholar PubMed
41. Ohtsu H, Suzuki H, Nakashima H, Dhobale S, Frank GD, Motley ED, Eguchi S. Angiotensin II signal transduction through small GTP-binding proteins: mechanism and significance in vascular smooth muscle cells. Hypertension 2006;48:534–40.10.1161/01.HYP.0000237975.90870.ebSuche in Google Scholar PubMed
42. Rossi G, Boscaro M, Ronconi V, Funder J. Aldosterone as a cardiovascular risk factor. Trends Endocrinol Metab 2005;16:104–7.10.1016/j.tem.2005.02.010Suche in Google Scholar
43. Bertrand L, Horman S, Beauloye C, Vanoverschelde A-M. Insulin signalling in the heart. Cardiovasc Res 2008;79:238–48.10.1093/cvr/cvn093Suche in Google Scholar
44. Bender SB, McGraw AP, Jaffe IZ, Sowers JR. Mineralocorticoid receptor-mediated vascular insulin resistance: an early contributor to diabetes-related vascular disease? Diabetes 2013;62:313–9.10.2337/db12-0905Suche in Google Scholar
45. DeMarco VG, Ford DA, Henriksen EJ, Aroor AR, Johnson MS, Habibi J, Ma L, Yang J, Albert CJ, Lally JW, Ford CA, Prasannarong M, Hayden MR, Whaley-Connell AT, Sowers JR. Obesity-related alterations in cardiac lipid profile and nondipping blood pressure pattern during transition to diastolic dysfunction in male db/db mice. Endocrinology 2013;154:159–71.10.1210/en.2012-1835Suche in Google Scholar
46. Jung DY, Ko HJ, Lichtman EI, Lee, Lawton E, Ong H, Yu K, Azuma Y, Friedline RH, Lee KW, Kim JK. Short-term weight loss attenuates local tissue inflammation and improves insulin sensitivity without affecting adipose inflammation in obese mice. Am J Physiol Endocrinol Metab 2013;304:E964–76.10.1152/ajpendo.00462.2012Suche in Google Scholar
47. Vieira VJ, Valentine RJ, Wilund KR, Antao N, Baynard T, Woods JA. Effects of exercise and low-fat diet on adipose tissue inflammation and metabolic complications in obese mice. Am J Physiol Endocrinol Metab 2009;296:E1164–71.10.1152/ajpendo.00054.2009Suche in Google Scholar
48. Tsai AC, Sandretto A, Chung Y-C. Dieting is more effective in reducing weight but exercise is more effective in reducing fat during the early phase of a weight-reducing program in healthy humans. J Nutr Biochem 2003;14:541–9.10.1016/S0955-2863(03)00105-0Suche in Google Scholar
49. Vest AR, Heneghan HM, Agarwal S, Schauer PR, Young JB. Bariatric surgery and cardiovascular outcomes: a systematic review. Heart 2012;98:1763–77.10.1136/heartjnl-2012-301778Suche in Google Scholar PubMed
50. Kopp HP, Kopp CW, Festa A, Krzyzanowska K, Kriwanek S, Minar E, Roka R, Schernthaner G. Impact of weight loss on inflammatory proteins and their association with the insulin resistance syndrome in morbidly obese patients. Arterioscler Thromb Vasc Biol 2003;23:1042–7.10.1161/01.ATV.0000073313.16135.21Suche in Google Scholar PubMed
51. Cancello R, Henegar C, Viguerie N, Taleb S, Poitou C, Rouault C, Coupaye M, Pelloux V, Hugol D, Bouillot J-L, Bouloumié A, Barbatelli G, Cinti S, Svensson P-A, Barsh GS, Zucker J-D, Basdevant A, Langin D, Clément K. Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes 2005;54:2277–86.10.2337/diabetes.54.8.2277Suche in Google Scholar PubMed
52. Engeli S, Böhnke J, Gorzelniak K, Janke J, Schling P, Bader M, Luft FC, Sharma AM, Weight loss and the renin-angiotensin-aldosterone system. Hypertension 2005;45:356–62.10.1161/01.HYP.0000154361.47683.d3Suche in Google Scholar
53. Ho J, Keogh J, Bornstein S, Ehrhart-Bornstein M, Lewis J, Clifton P, Torpy D. Moderate weight loss reduces renin and aldosterone but does not influence basal or stimulated pituitary-adrenal axis function. Horm Metab Res 2007;39:694–9.10.1055/s-2007-985354Suche in Google Scholar
54. Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 2000;342:145–53.Suche in Google Scholar
55. Hansson L, Lindholm L, Niskanen L, Lanke J, Hedner T, Niklason A, Luomanmaki K, Dahlof B, de Faire U, Morlin C, Karlberg B, Wester P, Bjorck J. Effect of angiotensin-converting-enzyme inhibition compared with conventional therapy on cardiovascular morbidity and mortality in hypertension: the Captopril Prevention Project (CAPPP) randomised trial. Lancet 1999;353:611–6.10.1016/S0140-6736(98)05012-0Suche in Google Scholar
56. Pfeffer M, Swedberg K, Granger C, Held P, McMurray J, Michelson E, Olofsson B, Ostergren J, Yusuf S, Pocock S. Effects of candesartan on mortality and morbidity in patients with chronic heart failure: the CHARM-Overall programme. Lancet 2003;362:759–66.10.1016/S0140-6736(03)14282-1Suche in Google Scholar
57. ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). J Am Med Assoc 2002;288(23):2981–97.10.1001/jama.288.23.2981Suche in Google Scholar PubMed
58. Vermes E, Ducharme A, Bourassa MG, Lessard M, White M, Tardif J-C. Enalapril reduces the incidence of diabetes in patients with chronic heart failure: insight from the Studies of Left Ventricular Dysfunction (SOLVD). Circulation 2003;107:1291–6.10.1161/01.CIR.0000054611.89228.92Suche in Google Scholar
59. Okin PM, Devereux RB, Harris KE, Jern S, Kjeldsen SE, Lindholm LH, Dahlof B, for the LIFE Study Investigators. In-treatment resolution or absence of electrocardiographic left ventricular hypertrophy is associated with decreased incidence of new-onset diabetes mellitus in hypertensive patients: the Losartan Intervention for Endpoint Reduction in Hypertension (LIFE) Study. Hypertension 2007;50:984–90.10.1161/HYPERTENSIONAHA.107.096818Suche in Google Scholar PubMed
60. Bosch J, Yusuf S, Gerstein H, Pogue J, Sheridan P, Dagenais G, Diaz R, Avezum A, Lanas F, Probstfield J, Fodor G, Holman R. Effect of ramipril on the incidence of diabetes. N Engl J Med 2006;355:1551–62.10.1056/NEJMoa065061Suche in Google Scholar PubMed
61. Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B, Bittman R, Hurley S, Kleiman J, Gatlin M. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 2003;348:1309–21.10.1056/NEJMoa030207Suche in Google Scholar PubMed
62. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, Palensky J, Wittes J. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N Engl J Med 1999;341:709–17.10.1056/NEJM199909023411001Suche in Google Scholar PubMed
63. Swaminathan K, Davies J, George J, Rajendra N, Morris A, Struthers A. Spironolactone for poorly controlled hypertension in type 2 diabetes: conflicting effects on blood pressure, endothelial function, glycaemic control and hormonal profiles. Diabetologia 2008;51:762–8.10.1007/s00125-008-0972-5Suche in Google Scholar PubMed
64. Davies J, Band M, Morris A, Struthers A. Spironolactone impairs endothelial function and heart rate variability in patients with type 2 diabetes. Diabetologia 2004;47:1687–94.10.1007/s00125-004-1510-8Suche in Google Scholar PubMed
65. Preiss D, Thomas LE, Sun J-L, Haffner SM, Holman RR, Standl E, Leiter LA, Mazzone T, Rutten GE, Tognoni G, Martinez FA, Chiang F-T, Califf RM, McMurray JJ. Predictors of cardiovascular events in a contemporary population with impaired glucose tolerance: an observational analysis of the Nateglinide and Valsartan in Impaired Glucose Tolerance Outcomes Research (NAVIGATOR) trial. BMJ Open 2012;2(6):e001925.10.1136/bmjopen-2012-001925Suche in Google Scholar PubMed PubMed Central
66. Hershon K. Mechanistic and clinical aspects of renin-angiotensin-aldosterone system blockade in the prevention of diabetes mellitus and cardiovascular disease. Endocr Pract 2011;17:430–40.10.4158/EP10106.RASuche in Google Scholar PubMed
©2013 by Walter de Gruyter Berlin Boston
Artikel in diesem Heft
- Topic 2: Adipose Tissue and Corticosteroid Hormones
- Review Articles
- The role and regulation of 11β-hydroxysteroid dehydrogenase type 1 in obesity and the metabolic syndrome
- Obesity and cardiovascular disease: role of adipose tissue, inflammation, and the renin-angiotensin-aldosterone system
- The mineralocorticoid receptor: a new player controlling energy homeostasis
- Effects of energy restriction on activity of the hypothalamo-pituitary-adrenal axis in obese humans and rodents: implications for diet-induced changes in body composition
Artikel in diesem Heft
- Topic 2: Adipose Tissue and Corticosteroid Hormones
- Review Articles
- The role and regulation of 11β-hydroxysteroid dehydrogenase type 1 in obesity and the metabolic syndrome
- Obesity and cardiovascular disease: role of adipose tissue, inflammation, and the renin-angiotensin-aldosterone system
- The mineralocorticoid receptor: a new player controlling energy homeostasis
- Effects of energy restriction on activity of the hypothalamo-pituitary-adrenal axis in obese humans and rodents: implications for diet-induced changes in body composition