Home A single cell model for pretreatment of wood by microwave explosion
Article
Licensed
Unlicensed Requires Authentication

A single cell model for pretreatment of wood by microwave explosion

  • Xianjun Li , Yongdong Zhou , Yonglin Yan , Zhiyong Cai and Fu Feng
Published/Copyright: July 29, 2010
Become an author with De Gruyter Brill
Holzforschung
From the journal Volume 64 Issue 5

Abstract

A theoretical model was developed to better understand the process of microwave explosion treatment of wood cells. The cell expansion and critical conditions concerning pressure and temperature of ray parenchyma cells in Eucalyptus urophylla were simulated during microwave pretreatment. The results indicate that longitudinal and circumferential stresses were generated in the cell walls owing to the internal steam pressure during extensive microwave treatment. The circumferential stress is twice as high as the longitudinal stress. The pressure difference reaches its maximum value of 0.84 MPa when the extension ratio is 1.20 for the longitudinal direction and 1.62 for the circumferential direction. The maximum pressure difference at the theoretical yielding point is the critical pressure difference that can eventually rupture the ray cell. The critical pressure difference decreases with increasing cell radius and decreasing shear modulus in the cell wall. This simulated result provides useful information to modify wood at the level of ray parenchyma cells.


Corresponding author. USDA Forest Service, Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI 53726-2398, USA

Received: 2009-11-18
Accepted: 2010-5-3
Published Online: 2010-07-29
Published Online: 2010-07-29
Published in Print: 2010-08-01

©2010 by Walter de Gruyter Berlin New York

Articles in the same Issue

  1. Original papers
  2. Side reactions of 4-acetamido-TEMPO as the catalyst in cellulose oxidation systems
  3. Reactions of aldehydes with chlorous acid and chlorite in chlorine dioxide bleaching
  4. Using cationic polyvinyl alcohol (C-PVA) to improve the strength of wood-free papers containing high-yield pulp (HYP)
  5. A new phenolic glucoside and flavonoids from the bark of Eucommia ulmoides Oliv.
  6. Decomposition of a phenolic lignin model compound over organic N-bases in an ionic liquid
  7. Investigation on wax-impregnated wood. Part 1: Microscopic observations and 2D X-ray imaging of distinct wax types
  8. Investigation on wax-impregnated wood. Part 2: Study of void spaces filled with air by He pycnometry, Hg intrusion porosimetry, and 3D X-ray imaging
  9. Surface properties of eucalyptus pulp fibres as reinforcement of cement-based composites
  10. Cure kinetics of PF/PVAc hybrid adhesive for manufacturing profiled wood-strand composites
  11. Moisture induced stresses perpendicular to the grain in glulam: Review and evaluation of the relative importance of models and parameters
  12. Three-dimensional modeling of the structure formation and consolidation of wood composites
  13. Observation of cell shapes in wood cross-sections during water adsorption by confocal laser-scanning microscopy (CLSM)
  14. A single cell model for pretreatment of wood by microwave explosion
  15. Pore space analysis of beech wood: The vessel network
  16. Quantification of fungal colonization in modified wood: Quantitative real-time PCR as a tool for studies on Trametes versicolor
  17. Copper monoethanolamine adsorption in wood and its relation with cation exchange capacity (CEC)
  18. Effect of amine ligand, copper/amine ratio, and pH on copper adsorption into wood
  19. Effect of different soils and pH amendments on brown-rot decay activity in a soil block test
  20. A proposed accelerated field stake test for rapid assessment of wood preservative systems
  21. Meetings
  22. Meetings
Downloaded on 13.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hf.2010.095/html
Scroll to top button