Startseite Adding gaseous ammonia with heat treatment to improve the mechanical properties of spruce wood
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Adding gaseous ammonia with heat treatment to improve the mechanical properties of spruce wood

  • Yiqin Gao ORCID logo , Li Li und Yao Chen EMAIL logo
Veröffentlicht/Copyright: 17. April 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Degradation of the mechanical properties of heat-treated wood is a significant problem that needs to be addressed. This study aimed to stabilize the mechanical strength of heat-treated spruce wood by adding gaseous ammonia during the heat treatment. Gaseous ammonia penetrates rapidly into wood and is expected to form ammonium hydroxide when combined with water in the wood. This modification strategy neutralizes the acids produced by the degradation of hemicelluloses and reduces the degradation of the wood polymer composition and cell-wall structure. The preservation of wood polymer composition and cell-wall structure increases the indentation modulus of the wood cell walls. This increases the strength of the wood cell walls, resulting in an improvement in the mechanical properties of the heat-treated wood. The heat-treated wood’s dimensional stability and equilibrium moisture content are only slightly affected by the weak alkalinity modification.


Corresponding author: Yao Chen, Key Laboratory of Wood Material Science and Application, Ministry of Education, Beijing Forestry University, Haidian District, Qinghua East Rd 35#, Beijing 100083, China; and Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China, E-mail:

Award Identifier / Grant number: 31971742

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors acknowledge the support of the National Natural Science Foundation of China (grant number 31971742).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Bjurhager, I., Olsson, A.M., Zhang, B., Gerber, L., Kumar, M., Berglund, L.A., Burgert, I., Sundberg, B., and Salmén, L. (2010). Ultrastructure and mechanical properties of Populus wood with reduced lignin content caused by transgenic down-regulation of cinnamate 4-hydroxylase. Biomacromolecules 11: 2359–2365, https://doi.org/10.1021/bm100487e.Suche in Google Scholar PubMed

Cao, D., Zeng, H., and Li, C.J. (2019). Formal cross-coupling of diaryl ethers with ammonia by dual C (Ar)–O bond cleavages. ACS Catal. 8: 8873–8878, https://doi.org/10.1021/acscatal.8b02214.Suche in Google Scholar

Casdorff, K., Keplinger, T., and Burgert, I. (2017). Nano-mechanical characterization of the wood cell wall by AFM studies: comparison between AC-and QITM mode. Plant Methods 13: 60, https://doi.org/10.1186/s13007-017-0211-5.Suche in Google Scholar PubMed PubMed Central

Churkina, G., Organschi, A., Reyer, C.P.O., Ruff, A., Vinke, K., Liu, Z., Reck, B.K., Graedel, T.E., and Schellnhuber, H.J. (2020). Buildings as a global carbon sink. Nat. Sustain. 3: 269–276, https://doi.org/10.1038/s41893-019-0462-4.Suche in Google Scholar

Dzurenda, L., Geffert, A., Geffertová, J., and Dudiak, M. (2020). Evaluation of the process thermal treatment of maple wood saturated water steam in terms of change of pH and color of wood. Bioresources 15: 2550–2559, https://doi.org/10.15376/biores.15.2.2550-2559.Suche in Google Scholar

Felhofer, M., Bock, P., Singh, A., Prats-Mateu, B., Zirbs, R., and Gierlinger, N. (2020). Wood deformation leads to rearrangement of molecules at the nanoscale. Nano Lett. 20: 2647–2653, https://doi.org/10.1021/acs.nanolett.0c00205.Suche in Google Scholar PubMed PubMed Central

Gaff, M., Kačík, F., Sandberg, D., Babiak, M., Turčani, M., Niemz, P., and Hanzlík, P. (2019). The effect of chemical changes during thermal modification of European oak and Norway spruce on elasticity properties. Compos. Struct. 220: 529–538, https://doi.org/10.1016/j.compstruct.2019.04.034.Suche in Google Scholar

Geffert, A., Geffertova, J., and Dudiak, M. (2019). Direct method of measuring the pH value of wood. Forests 10: 852, https://doi.org/10.3390/f10100852.Suche in Google Scholar

Hill, C., Altgen, M., and Rautkari, L. (2021). Thermal modification of wood — a review: chemical changes and hygroscopicity. J. Mater. Sci. 56: 6581–6614, https://doi.org/10.1007/s10853-020-05722-z.Suche in Google Scholar

Jäger, A., Bader, T., Hofstetter, K., and Eberhardsteiner, J. (2011). The relation between indentation modulus, microfibril angle, and elastic properties of wood cell walls. Composites Part A 42: 677–685, https://doi.org/10.1016/j.compositesa.2011.02.007.Suche in Google Scholar

Kim, J.Y., Hwang, H., Oh, S., Kim, Y.S., Kim, U.J., and Choi, J.W. (2014). Investigation of structural modification and thermal characteristics of lignin after heat treatment. Int. J. Biol. Macromol. 66: 57–65, https://doi.org/10.1016/j.ijbiomac.2014.02.013.Suche in Google Scholar PubMed

Kitin, P., Nakaba, S., Hunt, C.G., Lim, S., and Funada, R. (2020). Direct fluorescence imaging of lignocellulosic and suberized cell walls in roots and stems. AoB Plants 12: plaa032, https://doi.org/10.1093/aobpla/plaa032.Suche in Google Scholar PubMed PubMed Central

Kymäläinen, M., Ben Mlouka, S., Belt, T., Merk, V., Liljeström, V., Hänninen, T., Uimonen, T., Kostiainen, M., and Rautkari, L. (2018). Chemical, water vapour sorption and ultrastructural analysis of Scots pine wood thermally modified in high-pressure reactor under saturated steam. J. Mater. Sci. 53: 3027–3037, https://doi.org/10.1007/s10853-017-1714-1.Suche in Google Scholar

Li, H., Guo, X., He, Y., and Zheng, R. (2019). A green steam-modified delignification method to prepare low-lignin delignified wood for thick, large highly transparent wood composites. J. Mater. Res. 34: 932–940, https://doi.org/10.1557/jmr.2018.466.Suche in Google Scholar

Nakano, T. and Miyazaki, J. (2003). Surface fractal dimensionality and hygroscopicity for heated wood. Holzforschung 57: 289–294, https://doi.org/10.1515/hf.2003.043.Suche in Google Scholar

Nam, S., French, A.D., Condon, B.D., and Concha, M. (2016). Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydr. Polym. 135: 1–9, https://doi.org/10.1016/j.carbpol.2015.08.035.Suche in Google Scholar PubMed

Ramage, M.H., Burridge, H., Busse-Wicher, M., Fereday, G., Reynolds, T., Shah, D.U., Wu, G., Yu, L., Fleming, P., Densley-Tingley, D., et al.. (2017). The wood from the trees: the use of timber in construction. Renewable Sustainable Energy Rev. 68: 333–359, https://doi.org/10.1016/j.rser.2016.09.107.Suche in Google Scholar

Song, J., Chen, C., Zhu, S., Zhu, M., Hu, L., Ray, U., Li, Y., Kuang, Y., Li, Y., Quispe, N., et al.. (2018). Processing bulk natural wood into a high-performance structural material. Nature 554: 224–228, https://doi.org/10.1038/nature25476.Suche in Google Scholar PubMed

Sprdlík, V., Brabec, M., Mihailovic, S., and Rademacher, P. (2016). Plasticity increase of beech veneer by steaming and gaseous ammonia treatment. Maderas Cienc. Tecnol. 18: 91–98, https://doi.org/10.4067/s0718-221x2016005000009.Suche in Google Scholar

Takada, M., Chandra, R.P., and Saddler, J.N. (2019). The influence of lignin migration and relocation during steam pretreatment on the enzymatic hydrolysis of softwood and corn stover biomass substrates. Biotechnol. Bioeng. 116: 2864–2873, https://doi.org/10.1002/bit.27137.Suche in Google Scholar PubMed

Tjeerdsma, B.F., Boonstra, M., Pizzi, A., Tekely, P., and Militz, H. (1998). Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz Roh-Werkst. 56: 149–153, https://doi.org/10.1007/s001070050287.Suche in Google Scholar

Weigl, M., Müller, U., Wimmer, R., and Hansmann, C. (2012). Ammonia vs. thermally modified timber—comparison of physical and mechanical properties. Eur. J. For. Wood Prod. 70: 233–239, https://doi.org/10.1007/s00107-011-0537-z.Suche in Google Scholar

Xue, Y., Qiu, X., and Ouyang, X. (2020). Insights into the effect of aggregation on lignin fluorescence and its application for microstructure analysis. Int. J. Biol. Macromol. 154: 981–988, https://doi.org/10.1016/j.ijbiomac.2020.03.056.Suche in Google Scholar PubMed

Yin, J., Yuan, T., Lu, Y., Song, K., Li, H., Zhao, G., and Yin, Y. (2017). Effect of compression combined with steam treatment on the porosity, chemical compositon and cellulose crystalline structure of wood cell walls. Carbohydr. Polym. 155: 163–172, https://doi.org/10.1016/j.carbpol.2016.08.013.Suche in Google Scholar PubMed

Zhao, C., Shao, Q., Ma, Z., Li, B., and Zhao, X. (2016). Physical and chemical characterizations of corn stalk resulting from hydrogen peroxide presoaking prior to ammonia fiber expansion pretreatment. Ind. Crop. Prod. 83: 86–93, https://doi.org/10.1016/j.indcrop.2015.12.018.Suche in Google Scholar

Zhu, L., Dang, B., Zhang, K., Zhang, J., Zheng, M., Zhang, N., Du, G., Chen, Z., and Zheng, R. (2022). Transparent bioplastics from super-low lignin wood with abundant hydrophobic cellulose crystals. ACS Sustainable Chem. Eng. 10: 13775–13785, https://doi.org/10.1021/acssuschemeng.2c04053.Suche in Google Scholar

Received: 2022-11-25
Accepted: 2023-03-28
Published Online: 2023-04-17
Published in Print: 2023-06-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hf-2022-0179/html?lang=de
Button zum nach oben scrollen