Abstract
In this study, a simple and effective method for preparing bamboo with high fungal resistance was first proposed. Flattened moso bamboo (Phyllostachys pubescens), which is a perishable species, was connected to a silver plate and exposed to a high-voltage electrostatic field (HEVF). The method was based on HEVF excitation of a silver plate to produce silver ions and facilitate in situ impregnation of bamboo. Silver ions were present in the forms of Ag(0), Ag(I) and Ag(III) and reacted with bamboo functional groups under HVEF treatment. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analysis showed that compared to those of untreated bamboo, the O/C ratio and OH content of treated bamboo were lower, the number of CHO groups decreased, the number of CO groups increased, and silver interacted with the hemicellulose and lignin of bamboo. The concentration of silver ions increased with increasing treatment time and voltage. The silver ions were nanocrystalline, and the average particle size was 50 nm. The mass loss and moisture content of the treated bamboo decreased significantly after exposure to decay fungi. Therefore, in situ impregnation of silver with HVEF was a simple and effective method to improve the durability of bamboo materials.
Funding source: Doctorate Fellowship Foundation of Nanjing Forestry University
Funding source: Postgraduate Research & Practice Innovation Program of Jiangsu Province
Award Identifier / Grant number: KYCX18_0962
Funding source: the National Key R&D Program of China
Award Identifier / Grant number: 2017YFC0703501
Funding source: National Natural and Science Foundation
Award Identifier / Grant number: BK20170926
Funding source: National First-class Disciplines
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: The authors gratefully acknowledge funding support from the National Key R&D Program of China (2017YFC0703501), the National Natural and Science Foundation (no. BK20170926), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX18_0962), the Doctorate Fellowship Foundation of Nanjing Forestry University, a project funded by the National First-class Disciplines (PNFD) and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Afrin, T., Tsuzuki, T., Kanwar, R.K., Wang, X. (2012). The origin of the antibacterial property of bamboo. J. Text. I. 103: 844–849. https://doi.org/10.1080/00405000.2011.614742.Suche in Google Scholar
Benjamin, D., Rachel, A., Frederick, G., Jean, B. (2004). An investigation into the potential of ionic silver as a wood preservative. In Proceedings of the 2nd Wood-frame housing durability and disaster issues conference. Forest Products Society, Las Vegas, pp. 135–145.Suche in Google Scholar
Brito, B.S.L., Pereira, F.V., Putaux, J.-L., Jean, B. (2012). Preparation, morphology and structure of cellulose nanocrystals from bamboo fibers. Cellulose 19: 1527–1536. https://doi.org/10.1007/s10570-012-9738-9.Suche in Google Scholar
Barros, D., Pradhan, A., Mendes, V., Manadas, B., Santos, P.M., Pascoal, C., Cassio, F. (2019). Proteomics and antioxidant enzymes reveal different mechanisms of toxicity induced by ionic and nanoparticulate silver in bacteria. Environ. Sci. Nano. 6. https://doi.org/10.1039/c8en01067f.Suche in Google Scholar
Benjamin, D., Rachel, A., Frederick, G. (2004). An investigation into the potential of ionic silver as a wood preservative. Woodframe housing durability and disaster issues 133–145.Suche in Google Scholar
Chen, G.C. (1994). Fungal decay resistance of wood reacted with chlorosulfonyl isocyanate or epichlorohydrin. Holzforschung 48: 181–185. https://doi.org/10.1515/hfsg.1994.48.3.181.Suche in Google Scholar
Craeiun, R. (1997). XPS and FTIR applied to the study of waterborne copper naphthenate wood preservatives. Holzforschung 51: 207–213. https://doi.org/10.1515/hfsg.1997.51.3.207.Suche in Google Scholar
Christensen, I.V., Ottosen, L.M., Jensen, S.R., Jacobsen, M.B. (2007). Electrochemical re-impregnation of wood with copper. In: 6th Symposium on electrokinetic remediation EREM2007, pp. 159–160.Suche in Google Scholar
Christensen, I.V. (2007). Electrokinetic accelerated ingress of boron after surface treatment of wood. International Research Group on Wood Protection. IRG/WP 07-40372.Suche in Google Scholar
Ding, X.C., Meneses, M.B., Albukhari, S.M., Richter, D.L., Matuana, L.M., Heiden, P. (2013). Comparing leaching of different copper oxide nanoparticles and ammoniacal copper salt from wood. Macromol. Mater. Eng. 298: 1335–1343. https://doi.org/10.1002/mame.201200439.Suche in Google Scholar
Dey, S., Maiti, T.K., Sreemany, M., Bhattacharyya, B.C. (1992). Characterization of white-rotted and brown-rotted rice straw by X-ray photoelectron spectroscopy. Holzforschung 46: 385–390. https://doi.org/10.1515/hfsg.1992.46.5.385.Suche in Google Scholar
EN 113. (1997). Wood preservatives-test method for determining the protective effectiveness against wood destroying basidiomycetes determination of the toxic values. British Standards Institution, UK, London.Suche in Google Scholar
Ferraria, A.M., Carapeto, A.P., Rego, A.M.B.D. (2012). X-ray photoelectron spectroscopy: silver salts revisited. Vacuum 86: 1988–1991. https://doi.org/10.1016/j.vacuum.2012.05.031.Suche in Google Scholar
Goodell, B., Qian, Y., Jellison, J., Richard, M., Qi, W. (2002). Lignocellulose oxidation by low molecular weight metal-binding compounds isolated from wood degrading fungi: a comparison of brown rot and white rot systems and the potential application of chelator-mediated Fenton reactions. Prog. Biotechnol. 21: 37–47. https://doi.org/10.1016/s0921-0423(02)80006-5.Suche in Google Scholar
Guggenbichler, J.-P., Böswald, M., Lugauer, S., Krall, T. (1999). A new technology of microdispersed silver in polyurethane induces antimicrobial activity in central venous catheters. Infection 27: 16–23. https://doi.org/10.1007/bf02561612.Suche in Google Scholar
Guanben, D. (1999). X-ray photoelection spectroscopic (XPS) analysis of wood surface treatment with microwave plasma. Sci. Silvae Sinice. 35: 104–109.Suche in Google Scholar
Hattori, T., Tamura, T. (1939). On the effect of electricity upon the growth of wood-destroying fungi. J. Phytopathol. 9: 211–222. https://doi.org/10.3186/jjphytopath.9.211.Suche in Google Scholar
Hergert, H.L. (1971). Infrared speetra. In: Sarkanen, K.V. (Ed.). Lignins-occuerrne, formation, structuer and reaction. Wiley-Interseience, New York.Suche in Google Scholar
Hoflund, G.B., Hazos, Z.F., Salaita, G.N. (2000). Surface characterization study of Ag, AgO, and Ag2O using X-ray photoelectron spectroscopy and electron energy-loss spectroscopy. Phys. Rev. B. 62: 11126–11133. https://doi.org/10.1103/physrevb.62.11126.Suche in Google Scholar
He, Q., Zhan, T.Y., Zhang, H.Y., Ju, Z.H., Hong, L., Brosse, N., Lu, X.N. (2019a). Robust and durable bonding performance of bamboo induced by high voltage electrostatic field treatment. Ind. Crop. Prod. 137: 149–156. https://doi.org/10.1016/j.indcrop.2019.05.010.Suche in Google Scholar
He, Q., Zhan, T.Y., Ju, Z.H., Zhang, H.Y., Hong, L., Brosse, N., Lu, X.N. (2019b). Influence of high voltage electrostatic field (HVEF) on bonding characteristics of Masson (Pinus massoniana Lamb.) veneer composites. Eur. J. Wood. Wood. Prod. 77: 105–114. https://doi.org/10.1007/s00107-018-1360-6.Suche in Google Scholar
Ibach, R.E., Rowell, R.M. (2001). Wood preservation based on in situ polymerization of bioactive monomers. Part 2. Fungal resistance and thermal properties of treated wood. Holzforschung 55: 365–372. https://doi.org/10.1515/hf.2001.061.Suche in Google Scholar
Jun, Z. (2000). FTIR charaeterization of copper ehtanolamine-wood Interaction for wood presevration. Holzforschung 54: 119–122. https://doi.org/10.1515/HF.2000.020.Suche in Google Scholar
Kumar, S., Dobriyal, P.B. (1992). Treatability and flow path studies in bamboo Part-I. Dendrocalamus strictus Nees.Wood. Fiber. Sci. 24: 113–117.Suche in Google Scholar
Kumar, S., Shukla, K.S., Dev, I., Dobriyal, P.B. (1994). Bamboo persevration techniques: a review. Intemational network for bamboo and rattan and Indian cocunil of foerstry reseacrh education. INBAR and ICFRE.Suche in Google Scholar
Kamdem, D.P., Riedl, B., Adnot, A, Kaliaguine, S. (1991). ESCA spectroscopy of poly (methyl methacrylate) grafted onto wood fibers. J. Appl. Polym. Sci. 43: 1901–1912. https://doi.org/10.1002/app.1991.070431015.Suche in Google Scholar
Kim, S.W., Jung, J.H., Lamsal, K., Kim, Y.S., Min, J.S., Lee, Y.S. (2012). Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 40: 53–58. https://doi.org/10.5941/myco.2012.40.1.053.Suche in Google Scholar
Lebow, S.T. (1995). Interaetions of ammoniacal copper zinc arsenate (ACZA) with Douglas-fir. Wood. Fiber. Sci. 27: 105–118. https://doi.org/10.1007/BF02716412.Suche in Google Scholar
Liese, W. (1959). Bamboo preservation and soft-rot. F.A.O. report to Govt. of India. No. 1106.Suche in Google Scholar
Low, I.M., Che, Z.Y., Latella, B.A. (2006). Mapping the structure, composition and mechanical properties of bamboo. J. Mater. Res. 21: 1969–1976. https://doi.org/10.1557/jmr.2006.0238.Suche in Google Scholar
Liu, D., Song, J., Anderson, D.P, Chang, P.R. (2012). Bamboo fiber and its reinforced composites: structure and properties. Cellulose 19: 1449–1480. https://doi.org/10.1007/s10570-012-9741-1.Suche in Google Scholar
Mock, J.J., Barbic, M., Smith, D.R., Schultz, D.A., Schultz, S.J. (2002). Shape effects in plasmon resonance of individual colloidal silver nanoparticles, J. Chem. Phys. 116: 6755–6759. https://doi.org/10.1063/1.1462610.Suche in Google Scholar
Makarov, I.O., Klyuev, D.A., Smirnov, V.F., Smirnova, O.N., Anikina, N.A., Dikareva, N.V. (2019). Effect of low-frequency pulsed magnetic field and low-level laser radiation on oxidoreductase activity and growth of fungi-active destructors of polymer materials. Microbiology 88: 72–78. https://doi.org/10.1134/s0026261719010053.Suche in Google Scholar
Monrolin, N., Praud, O., Plouraboué, F. (2018). Electrohydrodynamic ionic wind, force field, and ionic mobility in a positive dc wire-to-cylinders corona discharge in air. Phys. Rev. Fluids. 3. https://doi.org/10.1103/physrevfluids.3.063701.Suche in Google Scholar
Nzokou, P., Kamdem, D.P. (2010). X-ray photoelectron spectroscopy study of red oak- (Quercus rubra), black cherry- (Prunus serotina) and red pine- (Pinus resinosa) extracted wood surfaces. Surf. Interface Anal. 37: 689–694. https://doi.org/10.1002/sia.2064.Suche in Google Scholar
Radetic, M. (2013). Functionalization of textile materials with silver nanoparticles. J. Mater. Sci. 48: 95–107. https://doi.org/10.1007/s10853-012-6677-7.Suche in Google Scholar
Rhew, R.C., Ostergaard, L., Saltzman, E.S., Yanofsky, M.F. (2003). Genetic control of methyl halide production in arabidopsis. Curr. Biol. 13: 1809–1813. https://doi.org/10.1016/j.cub.2003.09.055.Suche in Google Scholar
Syehee, A., Seichang, O., Ingyu, C., Han, G.S., Jeong, H.S., Kim, K.W., Yoon, Y.H., Yang, I. (2010). Environmentally friendly wood preservatives formulated with enzymatic-hydrolyzed okara, copper and/or boron salts. J. Hazard Mater. 178: 604–611. https://doi.org/10.1016/j.jhazmat.2010.01.128.Suche in Google Scholar
Sharma, R., Varshney, V.K., Chauhan, G.S., Naithani, S., Soni, P.L. (2009). Hydroxypropylation of cellulose isolated from bamboo (Dendrocalamus strictus) with respect to hydroxypropoxyl content and rheological behavior of the hydroxypropyl cellulose. J. Appl. Polym. Sci. 113: 2450–2455. https://doi.org/10.1002/app.30205.Suche in Google Scholar
Sarkar, A., Appidi, S. (2009). Single bath process for imparting antimicrobial activity and ultraviolet protective property to bamboo viscose fabric. Cellulose 16: 923–928. https://doi.org/10.1007/s10570-009-9299-8.Suche in Google Scholar
Sun, F.L., Duan, X.F., Mao, S.F. (2007). Decay resistance of bamboo wood treated with chitosan-metal complexes against the white-rot fungus coriolous versicolor. Sci. Silvae Sin. 43: 82–87. https://doi.org/10.11707/j.1001-7488.20070414.Suche in Google Scholar
Sondi, I., Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid. Interf. Sci. 275: 177–182. https://doi.org/10.1016/j.jcis.2004.02.012.Suche in Google Scholar
Schmidt, O. (2006). Wood and tree frungi. Biology, damage, protection, and use. Springer, Berlin, Heidelberg, p. 344.Suche in Google Scholar
Tang, T.K.H., Schmidt, O., Liese, W. (2012). Protection of bamboo against mould using environment-friendly chemicals. J. Tropical Forest Sci. 24: 285–290.Suche in Google Scholar
Teli, M.D., Sheikh, J. (2014). Bamboo rayon-copper nanoparticle composites as durable antibacterial textile materials. Compos. Interfaces. 21: 161–71. https://doi.org/10.1080/15685543.2013.855528.Suche in Google Scholar
Teli, M.D., Sheikh, J. (2012). Antibacterial and acid and cationic dyeable bamboo cellulose (rayon) fabric on grafting. Carbohyd. Polym. 88: 1281–7. https://doi.org/10.1016/j.carbpol.2012.02.005.Suche in Google Scholar
Tao, L., Cheng, D.L., Wålinder, M.E.P., Zhou, D.G. (2015). Wettability of oil heat-treated bamboo and bonding strength of laminated bamboo board. Ind. Crop. Prod. 69: 15–20. https://doi.org/10.1016/j.indcrop.2015.02.008.Suche in Google Scholar
Treu, A., Larnøy, E. (2010). Wood protection by means of electro osmotic pulsing technology (PLEOT). Stockholm: IRG Secretariat. IRG-WP 10-40505.Suche in Google Scholar
Treu, A., Larnøy, E. (2016), Impact of a low pulsed electric field on the fungal degradation of wood in laboratory trials. Int. Biodeter. Biodegr. 114: 244–251. https://doi.org/10.1016/j.ibiod.2016.07.007.Suche in Google Scholar
Treu, A., Bardage, S., Johansson, M., Trey, S. (2014). Fungal durability of polyaniline modified wood and the impact of a low pulsed electric field. Int. Biodeter. Biodegr. 87: 26–33. https://doi.org/10.1016/j.ibiod.2013.11.001.Suche in Google Scholar
Wei, D., Schmidt, O., Liese, W. (2013). Durability test of bamboo against fungi according to EN standards. Eur. J. Wood. Wood. Prod. 71: 551–556. https://doi.org/10.1007/s00107-013-0707-2.Suche in Google Scholar
Wang, L.L., Zhang, X.T., Li, B., Sun, P.P., Yang, J.K., Xu, H.Y., Lu, Y.C. (2011). Superhydrophobic and ultraviolet-blocking cotton textiles. ACS Appl. Mater. Interfaces 3: 1277–1281. https://doi.org/10.1021/am200083z.Suche in Google Scholar
Wang, H.J., Li, F.Z., Chen, F. (2013). Study on corrosion resistance and resistance of nano copper oxide wood preservative. For. Sci. Technol. 38: 25–28.Suche in Google Scholar
Wang, R., Wang, X., Xin, J.H. (2009). Advanced visible-light-driven self-cleaning cotton by Au/TiO2/SiO2 photocatalysts. ACS Appl. Mater. Interfaces. 2: 82–85. https://doi.org/10.1021/am900588s.Suche in Google Scholar
Xu, G., Goodell, B. (2001). Mechanisms of wood degradation by brown-rot fungi: chelator-mediated cellulose degradation and binding of iron by cellulose. J. Biotechnol. 87: 43–57. https://doi.org/10.1016/s0168-1656(00)00430-2.Suche in Google Scholar
Xie, C.S. (1995). Fixation of ammoniacal copper persevratives: reaetion of vanillin, a lignin model compound with ammoniacal copper sulphate solution. Holzforschung 49: 483–490. https://doi.org/10.1515/hfsg.1995.49.6.483.Suche in Google Scholar
Xia, H., Yang, G. (2012). Facile synthesis of inorganic nanoparticles by a precipitation method in molten ε-caprolactam solvent. J. Mater. Chem. 22: 18664–18670. https://doi.org/10.1039/c2jm34333a.Suche in Google Scholar
Yang, S.L. (2014). Preparation and properties of copper anchored by silica gel anti-mold chemical used for bamboo. Central South University of Forestry and Technology, Changsha.Suche in Google Scholar
Yue, K., Cheng, X.C., Chen, Z.J., Tang, L.J., Liu, W.Q. (2018). Investigation of decay resistance of poplar wood impregnated with of alkaline copper, urea-formaldehyde and phenol-formaldehyde resin. Wood. Fiber. Sci. 50: 392–401. https://doi.org/10.22382/wfs-2018-051.Suche in Google Scholar
Yoneya, M., Sugisawa, S.-Y. (2019). Simulation of colloidal silver nanoparticle formation from a precursor complex. J. Phys. Chem. C 123. https://doi.org/10.1021/acs.jpcc.9b01360.Suche in Google Scholar
Yang, H., Ren, Y.Y., Wang, T., Wang, C. (2016). Preparation and antibacterial activities of Ag/Ag+/Ag3+ nanoparticle composites made by pomegranate (Punica granatum) rind extract. Results. Phys. 6: 299–304. https://doi.org/10.1016/j.rinp.2016.05.012.Suche in Google Scholar
Yao, Q., Wang, C., Fan, B., Wang, H., Sun, Q., Jin, C., Zhang, H. (2016). One-step solvothermal deposition of ZnO nanorod arrays on a wood surface for robust superamphiphobic performance and superior ultraviolet resistance. Sci. Rep-UK. 6: 35505. https://doi.org/10.1038/srep35505.Suche in Google Scholar
Zhang, G., Lin, H., Morikawa, H., Miura, M. (2013). In-situ growth of ZnO particles on bamboo pulp fabric and its anti-UV property. Fiber. Polym. 14: 1803–1807. https://doi.org/10.1007/s12221-013-1803-y.Suche in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Review
- A review on life cycle assessments of thermally modified wood
- Original articles
- Mechanisms of liquid imbibition in Douglas-fir inferred from 1H nuclear magnetic resonance methods
- Evaluating internal condition of hardwood logs based on AR-minimum entropy deconvolution combined with wavelet based spectral kurtosis approach
- Comprehensive study on the effects of process parameters of alkaline thermal pretreatment followed by thermomechanical extrusion in sugar liberation from Eucalyptus grandis wood
- Influence of thermal modification and extraction techniques on yield, antioxidant capacity and phytochemical profile of chestnut (Castanea sativa Mill.) wood
- Enhancing the mechanical and water resistance performances of bamboo particle reinforced polypropylene composite through cell separation
- Decay, insect, and termite resistance of wood modified with epoxidized vegetable oils
- Silver electrochemical treatment of bamboo and its effect on decay fungi
Artikel in diesem Heft
- Frontmatter
- Review
- A review on life cycle assessments of thermally modified wood
- Original articles
- Mechanisms of liquid imbibition in Douglas-fir inferred from 1H nuclear magnetic resonance methods
- Evaluating internal condition of hardwood logs based on AR-minimum entropy deconvolution combined with wavelet based spectral kurtosis approach
- Comprehensive study on the effects of process parameters of alkaline thermal pretreatment followed by thermomechanical extrusion in sugar liberation from Eucalyptus grandis wood
- Influence of thermal modification and extraction techniques on yield, antioxidant capacity and phytochemical profile of chestnut (Castanea sativa Mill.) wood
- Enhancing the mechanical and water resistance performances of bamboo particle reinforced polypropylene composite through cell separation
- Decay, insect, and termite resistance of wood modified with epoxidized vegetable oils
- Silver electrochemical treatment of bamboo and its effect on decay fungi