Startseite A study of thermo-hydro-treated (THT) birch wood by chemical analysis and Py-GC/MS
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A study of thermo-hydro-treated (THT) birch wood by chemical analysis and Py-GC/MS

  • Ingeborga Andersone , Galina Dobele , Bruno Andersons EMAIL logo , Nina Kurnosova , Edgars Kuka , Aleksandrs Volperts und Juris Grinins
Veröffentlicht/Copyright: 5. März 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The chemical changes in birch wood occurring at thermo-hydro treatment (THT) was studied at temperatures (T) of 150, 160 and 170°C by analytical pyrolysis [Py-gas chromatography/mass spectrometry/flame ionisation detector (GC/MS/FID)], elemental analysis and traditional wet-chemical analysis. THT wood (THTW) was also extracted with acetone. Mass losses (ML) due to THT and acetone extraction of THTW were considered for material balance calculations. The holocellulose and hemicellulose (HC) contents decrease with increasing THT temperature (THTT), thus the apparent lignin content is elevated by ca. 20%. The HC degradation begins at 150°C, while that of α-cellulose modification at 170°C. Compared to unmodified birch, the THT170°C material contains ca. 10% less α-cellulose and up to 40% less HC. The Py-GC/MS also indicates decreasing amounts of volatile products from polymeric carbohydrates (CHs) and lignin origin as a function of increasing THTT. The identified CH-based Py products of THT170°C of non-extracted (ne) and extracted (e) materials resulted in 13 and 22% weight decrements, respectively, while the lignin-type Py products were reduced by 13 and 49%, respectively. With increasing THTT, the total content of CO2, water and methanol decreases, and the amount of unidentified compounds increases by 30%.

Acknowledgements

The authors thank research assistant Vila Jurkjane for her help in processing the Py data.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors gratefully acknowledge the financial support from the European Regional Development Fund project “Wood with improved service properties due to combination of thermal modification and impregnation” No.1.1.1.1/16/A/133.

  3. Employment or leadership: None declared.

  4. Honorarium: None declared.

References

Altgen, M., Hofmann, T., Militz, H. (2016a) Wood moisture content during the thermal modification process affects the improvement in hygroscopicity of Scots pine sapwood. Wood Sci. Technol. 50:1181–1195.10.1007/s00226-016-0845-xSuche in Google Scholar

Altgen, M., Willems, W., Militz, H. (2016b) Wood degradation affected by process conditions during thermal modification of European beech in a high-pressure reactor system. Eur. J. Wood Wood Prod. 74:653–662.10.1007/s00107-016-1045-ySuche in Google Scholar

Alves, A., Gierlinger, N., Schwanninger, M., Rodrigues, J. (2008) Analytical pyrolysis as a direct method to determine the lignin content in wood: part 2: evaluation of the common model and the influence of compression wood. J. Anal. Appl. Pyrol. 81:167–172.10.1016/j.jaap.2007.11.001Suche in Google Scholar

Andersson, S., Serima, R., Väänänen, T., Paakkari, T., Jämsä, S., Viitaniemi, P. (2005) X-ray scattering studies of thermally modified Scots pine (Pinus sylvestris). Holzforschung 59:422–427.10.1515/HF.2005.069Suche in Google Scholar

Backa, S., Brolin, A., Nilsson, T. (2001) Characterisation of fungal degraded birch wood by FTIR and Py-GC. Holzforschung 55:225–232.10.1515/HF.2001.037Suche in Google Scholar

Boonstra, M., van Acker, J., Kegel, E., Stevens, M. (2007) Optimisation of a two-stage heat treatment process: durability aspects. Wood Sci. Technol. 41:31–57.10.1007/s00226-006-0087-4Suche in Google Scholar

Browning, B.L. Methods in Wood Chemistry. Wiley, New York, 1967.Suche in Google Scholar

Burmester, A. (1973) Einfluß einer Wärme-Druck Behandlung halbtrockenen Holzes auf seine Formbeständigkeit. Holz Roh- und Werkstoff 31:237–243.10.1007/BF02607268Suche in Google Scholar

Curling, S., Clausen, C.A., Winandy, J.E. (2001) The effect of hemicelluloses degradation on the mechanical properties of wood during brown rot decay. The International Research Group on Wood Protection, Doc. No. IRG/WP 01-20219, Stockholm, Sweden.Suche in Google Scholar

Dizhbite, T., Telysheva, G., Dobele, G., Arshanitsa, A., Bikovens, O., Andersone, A., Kampars, V. (2001) Py-GC/MS for characterization of non-hydrolyzed residues from bioethanol production from softwood. J. Anal. Appl. Pyrol. 90:126–132.10.1016/j.jaap.2010.11.004Suche in Google Scholar

Esteves, B., Graça, J., Pereira, H. (2008) Extractive composition and summative chemical analysis of thermally treated eucalypt wood. Holzforschung 62:344–351.10.1515/HF.2008.057Suche in Google Scholar

Faix, O., Meier, D., Fortmann, I. (1990) Thermal degradation products of wood. Gas chromatographic separation and mass spectrometric characterization of monomeric lignin derived products. Holz Roh- Werkstoff 48:281–285.10.1007/BF02626519Suche in Google Scholar

Faix, O., Bremer, J., Schmidt, O., Stevanovic, T. (1991) Monitoring of chemical changes in white-rot degraded beech wood by pyrolysis-gas chromatography and Fourier-transform infrared spcectroscopy. J. Anal. Appl. Pyrol. 21:147–162.10.1016/0165-2370(91)80022-ZSuche in Google Scholar

Fengel, D. (1966) Über die Veränderungen des Holzes un seiners Komponenten im Temperaturbereich bis 200°C. Erste Mitteilung: Heiß- und Kaltwasser extrakte von thermisch behandeltem Fichtenholz. Holz Roh- Werkstoff 24:9–14.10.1007/BF02605543Suche in Google Scholar

Fengel, D., Przyklenk, M. (1970) Einfluß einer Wärmebehandlung auf das Lignin in Fichtenholz. Holz Roh- Werkstoff 28: 254–263.10.1007/BF02615746Suche in Google Scholar

Fengel, D., Wegener, G. Wood (Chemistry, Ultrastructure, Reactions). Walter de Gruyter, Berlin, New York, 1984.10.1515/9783110839654Suche in Google Scholar

Funaoka, M., Kako, T., Abe, I. (1990) Condensation of lignin during heating of wood. Wood Sci. Technol. 24:277–288.10.1007/BF01153560Suche in Google Scholar

Garrote, G., Dominguez, H., Parajó, J.C. (2001) Study on the deacetylation of hemicelluloses during the hydrothermal processing of Eucalyptus wood. Holz Roh- Werkstoff 59:53–59.10.1007/s001070050473Suche in Google Scholar

Gerardin, Ph. (2016) New alternatives for wood preservation based on thermal and chemical modification on wood – a review. Ann. Forest Sci. 73:559–570.10.1007/s13595-015-0531-4Suche in Google Scholar

González-Peña, M.M., Curling, S.F., Hale, M.D.C. (2009) On the effect of heat on the chemical composition and dimensions of thermally-modified wood. Polymer Degrad. Stability 4:2184–2193.10.1016/j.polymdegradstab.2009.09.003Suche in Google Scholar

Grinins, J., Andersons, B., Biziks, V., Andersone, I., Dobele, G. (2013) Analytical pyrolysis as an instrument to study the chemical transformations of hydrothermally modified wood. J. Anal. Appl. Pyrol. 103:36–41.10.1016/j.jaap.2012.10.016Suche in Google Scholar

Grinins, J., Andersons, B., Irbe, I., Andersone, I., Meija-Feldmane, A., Janberga, A., Pavlovics, G., Sansonetti, E. (2016a) Thermo-hydro treated (THT) birch veneers for producing plywood with improved properties. Holzforschung, 70:739–746.10.1515/hf-2015-0155Suche in Google Scholar

Grinins, J., Irbe, I., Andersons, B., Andersone, I., Meija-Feldmane, A., Janberga, A., Pavlovics, G., Sansonetti, E. (2016b) Thermo-hydro treated (THT) birch plywood with improved service properties. Int. Wood Prod. J. 7:181–187.10.1080/20426445.2016.1212963Suche in Google Scholar

Heigenmoser, A., Liebner, F., Windeisen, E., Richter, K. (2013) Investigation of thermally treated beech (Fagus sylvatica) and spruce (Picea abies) by means of multifunctional analytical pyrolysis-GC/MS. J. Anal. Appl. Pyrol. 100:117–126.10.1016/j.jaap.2012.12.005Suche in Google Scholar

Ibbett, R., Gaddipati, S., Davies, S., Hill, S., Tucker, G. (2011) The mechanisms of hydrothermal deconstruction of lignocellulose: new insights from thermal-analytical and complementary studies. Bioresource Technol. 102:9272–9278.10.1016/j.biortech.2011.06.044Suche in Google Scholar

Kamdem, P.D., Pizzi, A., Jermannaud, A. (2002) Durability of heat-treated wood. Holz Roh- Werkstoff 60:1–6.10.1007/s00107-001-0261-1Suche in Google Scholar

Kollmann, F., Fengel, D. (1965) Änderungen der chemischen Zusammensetzung von Holz durch thermische Behandlung. Holz Roh- Werkstoff 23:461–468.10.1007/BF02627217Suche in Google Scholar

Košikova, B., Hricovini, M., Cosentino, C. (2010) Interaction of lignin and polysaccharides in beech wood (Fagus sylvatica) during drying processes. Wood Sci. Technol. 33:373–380.10.1007/s002260050123Suche in Google Scholar

Li, J., Henriksson, G., Gellerstedt, G. (2007) Lignin depolymerization/ repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresource Technol. 98:3061–3068.10.1016/j.biortech.2006.10.018Suche in Google Scholar

Meier, D., Fortmann, I., Odermatt, J., Faix, O. (2005) Discrimination of genetically modified poplar clones by analytical pyrolysis-gas chromatography and principal component analysis. J. Anal. Appl. Pyrol. 74:129–137.10.1016/j.jaap.2004.12.001Suche in Google Scholar

Niemz, P., Hofmann, T., Retfalvi, T. (2010) Investigation of chemical changes in the structure of thermally modified wood. Maderas Ciencia y Technologia 12:69–78.10.4067/S0718-221X2010000200002Suche in Google Scholar

Nuopponen, M., Vuorinen, T., Jämsä, S., Viitaniemi, P. (2005) Thermal modification of softwood studied by FT-IR and UV resonance Raman spectroscopy. J. Wood Chem. Technol. 24:13–26.10.1081/WCT-120035941Suche in Google Scholar

Pfriem, A. (2006) Untersuchungen zum Materialverhalten thermisch modifizierter Hölzer für deren Verwendung im Musikinstrumenten. Ph.D. Dissertation. TU Dresden, Germany, 2006.Suche in Google Scholar

Rodrigues, J., Meier, D., Faix, O., Pereira, H. (1999) Determination of tree to tree variation in syringyl/guaiacyl ratio of Eucaliptus globulus wood lignin by analytical pyrolysis. J. Anal. Appl. Pyrol. 48:121–128.10.1016/S0165-2370(98)00134-XSuche in Google Scholar

Rowell, R.M., Ibach, R.E., McSweeny, J., Nilsson, T. (2009) Understanding decay resistance, dimensional stability and strength changes in heat-treated and acetylated wood. Wood Mat Sci. Eng. 4:14–22.10.1080/17480270903261339Suche in Google Scholar

Salmen, L., Burgert, I. (2009) Cell wall features with regard to mechanical performance. A review. Holzforschung 63:121–129.10.1515/HF.2009.011Suche in Google Scholar

Sandermann, W., Augustin, H. (1963) Chemische Untersuchungen über die thermische Zersetzung von Holz. Erste Mitteilung – Stand der Forschung. Holz Roh- Werkstoff 21:256–265.10.1007/BF02616316Suche in Google Scholar

Sandermann, W., Augustin, H. (1964) Chemische Untersuchungen über die thermische Zersetzung von Holz. Dritte Mitteilung – Chemische Untersuchung des Zersetzungsablaufes. Holz Roh- Werkstoff 22:377–386.10.1007/BF02628346Suche in Google Scholar

Stamm, A.J. (1956) Thermal degradation of wood and cellulose. Ind. Eng. Chem. 48:413–417.10.1021/ie51398a022Suche in Google Scholar

Syverud, K., Leirset, I., Vaaler, D. (2003) Characterization of carbohydrates in chemical pulps by pyrolysis gas chromatography/mass spectrometry. J. Anal. Appl. Pyrol. 67:381–391.10.1016/S0165-2370(02)00076-1Suche in Google Scholar

TAPPI T222 om-06 (2011) Acid-insoluble lignin in wood and pulp.Suche in Google Scholar

Tjeerdsma, B.F., Militz, H. (2005) Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz Roh- Werkstoff 63:102–111.10.1007/s00107-004-0532-8Suche in Google Scholar

Tjeerdsma, B.F., Boonstra, M., Pizzi, A., Tekely, P., Militz, H. (1998) Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz Roh- Werkstoff 56:149–153.10.1007/s001070050287Suche in Google Scholar

Tsuge, S. (1995) Analytical pyrolysis – past, present and future. J. Anal. Appl. Pyrol. 32:1–6.10.1016/0165-2370(94)00852-RSuche in Google Scholar

Weiland, J.J., Guyonnet, R. (2003) Study of chemical modification and fungi degradation of thermally modified wood using DRIFT spectroscopy. Holz Roh- Werkstoff 61:216–220.10.1007/s00107-003-0364-ySuche in Google Scholar

Welzbacher, C.R., Brischke, C., Rapp, A.O. (2007) Influence of treatment temperature and duration on selected biological, mechanical, physical and optical properties of thermally modified timber. Wood Mater. Sci. Eng. 2:66–76.10.1080/17480270701770606Suche in Google Scholar

Wikberg, H. Advanced Solid State NMR Spectroscopic Techniques in the Study of Thermally Modified Wood. Doctoral thesis. University of Helsinki, Finland, 2004.Suche in Google Scholar

Wikberg, H., Maunu, S.L. (2004) Characterisation of thermally modified hard and softwoods by 13C CPMAS NMR. Carbohyd. Polym. 58:461–466.10.1016/j.carbpol.2004.08.008Suche in Google Scholar

Willems, W., Gerardin, P., Militz, H. (2013) The average carbon oxidation state of thermally modified wood as a marker for its decay resistance against Basidiomycetes. Polymer Degrad. Stability 98:2140–2145.10.1016/j.polymdegradstab.2013.09.003Suche in Google Scholar

Winandy, J.E., Lebow, P.K. (2001) Modelling strength loss in wood by chemical composition. Part I. An individual component model for southern pine. Wood Fiber Sci. 33:291–234.Suche in Google Scholar

Windeisen, E., Wegener, G. (2008) Behaviour of lignin during thermal treatments of wood. Ind. Crops Prod. 27:157–162.10.1016/j.indcrop.2007.07.015Suche in Google Scholar

Windeisen, E., Strobel, C., Wegener, G. (2007) Chemical changes during the production of thermo-treated beech wood. Wood Sci. Technol. 41:523–536.10.1007/s00226-007-0146-5Suche in Google Scholar

Windeisen, E., Bächle, H., Zimmer, B., Wegener, G. (2009) Relations between chemical changes and mechanical properties of thermally treated wood. Holzforschung 63:773–778.10.1515/HF.2009.084Suche in Google Scholar

Zakis, G.F. Functional Analysis of Lignins and their Derivatives. TAPPI Press, Atlanta, 1994.Suche in Google Scholar

Zaman, A., Alen, R., Kolilainen, R. (2000) Thermal behaviour of Scots pine (Pinus sylvestris) and silver birch (Betula pendula) at 220–230°C. Wood Fiber Sci. 32:138–143.Suche in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/hf-2018-0169).


Received: 2018-07-31
Accepted: 2019-01-16
Published Online: 2019-03-05
Published in Print: 2019-06-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 20.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hf-2018-0169/html
Button zum nach oben scrollen