Home Negative oxygen ion (NOI) production by enhanced photocatalytic TiO2/GO composites anchored on wooden substrates
Article
Licensed
Unlicensed Requires Authentication

Negative oxygen ion (NOI) production by enhanced photocatalytic TiO2/GO composites anchored on wooden substrates

  • Xiaoshuai Han , Zhenxing Wang , Qinqin Zhang , Yan Lv and Junwen Pu EMAIL logo
Published/Copyright: October 1, 2018
Become an author with De Gruyter Brill

Abstract

Titanium dioxide (TiO2)/graphene oxide (GO)-treated wood was fabricated through a one-step hydrothermal-vacuum dipping technique, in which silica sol serves as a dispersant and linker owing to its good stability and high surface area, while the visible light activates TiO2/GO and negative oxygen ions (NOI) arise. This approach exhibits a super dye adsorption capacity and enhanced photocatalytic efficiency. In focus was the effect of the three-dimensional (3D) GO dopant on the NOI production, which was very high in this system. Namely, the concentration of NOI is up to 1710 ions cm−3 after 60 min visible light irradiation. Moreover, recycling experiments show that the properties of a TiO2/GO-wood system are stable. The TiO2/GO-treated wood is a healthy, environmentally friendly material which is promising for indoor decoration.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was sponsored by Special Fund for Beijing Common Construction Project and Beijing Forestry University, Grant No. 2016HXKFCLXY001.

  3. Employment or leadership: None declared.

  4. Honorarium: None declared.

References

Alexander, D.D., Bailey, W.H., Perez, V., Mitchell, M.E., Su, S. (2013) Air ions and respiratory function outcomes: a comprehensive review. J. Negat. Results Biomed. 12:14.10.1186/1477-5751-12-14Search in Google Scholar PubMed PubMed Central

Almeida, N.A., Martins, P.M., Teixeira, S., da Silva, J.A.L., Sencadas, V., Kühn, K., Cuniberti, G., Lanceros-Mendez, S., Marques, P.A. (2016) TiO2/graphene oxide immobilized in P (VDF-TrFE) electrospun membranes with enhanced visible-light-induced photocatalytic performance. J. Mater. Sci. 51: 6974–6986.10.1007/s10853-016-9986-4Search in Google Scholar

Bailey, W.H., Johnson, G.B., Bishop, J., Hetrick, T., Su, S. (2012) Measurements of charged aerosols near $\pm $500-kV DC transmission lines and in other environments. IEEE Trans. Power Del. 27:371–379.10.1109/TPWRD.2011.2172642Search in Google Scholar

Baron, R.A. (1987) Effects of negative ions on cognitive performance. J. Appl. Psy. 72:131.10.1037/0021-9010.72.1.131Search in Google Scholar

Ben-Dov, I., Amirav, I., Shochina, M., Amitai, I., Bar-Yishay, E., Godfrey, S. (1983) Effect of negative ionisation of inspired air on the response of asthmatic children to exercise and inhaled histamine. Thorax 38:584–588.10.1136/thx.38.8.584Search in Google Scholar PubMed PubMed Central

Buckalew, L., Rizzuto, A. (1984) Negative air ion effects on human performance and physiological condition. Aviat. Space. Envir. Md. 55:731.Search in Google Scholar

Cong, Y., Long, M., Cui, Z., Li, X., Dong, Z., Yuan, G., Zhang, J. (2013) Anchoring a uniform TiO2 layer on graphene oxide sheets as an efficient visible light photocatalyst. Appl. Surface Sci. 282:400–407.10.1016/j.apsusc.2013.05.143Search in Google Scholar

Gao, P., Li, A., Sun, D.D., Ng, W.J. (2014) Effects of various TiO2 nanostructures and graphene oxide on photocatalytic activity of TiO2. J. Hazard. Mater. 279:96–104.10.1016/j.jhazmat.2014.06.061Search in Google Scholar PubMed

Gao, L., Zhan, X., Lu, Y., Li, J., Sun, Q. (2015) pH-dependent structure and wettability of TiO2-based wood surface. Mater. Lett. 142:217–220.10.1016/j.matlet.2014.12.035Search in Google Scholar

Gao, L., Gan, W., Xiao, S., Zhan, X., Li, J. (2016a) A robust superhydrophobic antibacterial Ag–TiO2 composite film immobilized on wood substrate for photodegradation of phenol under visible-light illumination. Ceram. Int. 42:2170–2179.10.1016/j.ceramint.2015.10.002Search in Google Scholar

Gao, L., Qiu, Z., Gan, W., Zhan, X., Li, J., Qiang, T. (2016b) Negative oxygen ions production by superamphiphobic and antibacterial TiO2/Cu2O composite film anchored on wooden substrates. Sci. Rep. 6:26055.10.1038/srep26055Search in Google Scholar PubMed PubMed Central

Goldstein, N.I., Goldstein, R.N., Merzlyak, M.N. (1992) Negative air ions as a source of superoxide. Intern. J. Biomet. 36:118–122.10.1007/BF01208923Search in Google Scholar

Hawkins, L., Barker, T. (1978) Air ions and human performance. Ergonomics 21:273–278.10.1080/00140137808931724Search in Google Scholar

Hedge, A., Collis, M. (1987) Do negative air ions affect human mood and performance? Ann. Occup. Hyg. 31:285–290.Search in Google Scholar

Herrington, L. (1935) The influence of ionized air upon normal subjects. J. Clin. Invest. 14:70–80.10.1172/JCI100660Search in Google Scholar

Hong, J.-K., Kim, H.-R., Park, H.-H. (1998) The effect of sol viscosity on the sol-gel derived low density SiO2 xerogel film for intermetal dielectric application. Thin Solid Films 332:449–454.10.1016/S0040-6090(98)01045-1Search in Google Scholar

Inbar, O., Rotstein, A., Dlin, R., Dotan, R., Sulman, F. (1982) The effects of negative air ions on various physiological functions during work in a hot environment. Intern. J. Biometeo. 26:153–163.10.1007/BF02184628Search in Google Scholar PubMed

Jiang, G., Lin, Z., Chen, C., Zhu, L., Chang, Q., Wang, N., Wei, W., Tang, H. (2011) TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants. Carbon 49:2693–2701.10.1016/j.carbon.2011.02.059Search in Google Scholar

Jones, D., O’Connor, S., Collins, J., Watson, B. (1976) Effect of long-term ionized air treatment on patients with bronchial asthma. Thorax 31:428–432.10.1136/thx.31.4.428Search in Google Scholar PubMed PubMed Central

Linsebigler, A.L., Lu, G., Yates Jr, J.T. (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95:735–758.10.1021/cr00035a013Search in Google Scholar

Liu, Q., Liu, Z., Zhang, X., Yang, L., Zhang, N., Pan, G., Yin, S., Chen, Y., Wei, J. (2009) Polymer photovoltaic cells based on solution-processable graphene and P3HT. Adv. Funct. Mater. 19:894–904.10.1002/adfm.200800954Search in Google Scholar

Mattevi, C., Eda, G., Agnoli, S., Miller, S., Mkhoyan, K.A., Celik, O., Mastrogiovanni, D., Granozzi, G., Garfunkel, E., Chhowalla, M. (2009) Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv. Funct. Mater. 19:2577–2583.10.1002/adfm.200900166Search in Google Scholar

Nagato, K., Matsui, Y., Miyata, T., Yamauchi, T. (2006) An analysis of the evolution of negative ions produced by a corona ionizer in air. Intern. J. Mass Spectr. 248:142–147.10.1016/j.ijms.2005.12.001Search in Google Scholar

Palti, Y., De Nour, E., Abrahamov, A. (1966) The effect of atmospheric ions on the respiratory system of infants. Pediatrics 38:405–411.10.1542/peds.38.3.405Search in Google Scholar

Qiu, B., Xing, M., Zhang, J. (2014) Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries. J. Am. Chem. Soc. 136:5852–5855.10.1021/ja500873uSearch in Google Scholar PubMed

Ren, J., Wang, W., Sun, S., Zhang, L., Chang, J. (2009) Enhanced photocatalytic activity of Bi2WO6 loaded with Ag nanoparticles under visible light irradiation. Appl. Catal. B-Environ. 92:50–55.10.1016/j.apcatb.2009.07.022Search in Google Scholar

Rowell, R.M., Pettersen, R., Han, J.S., Rowell, J.S., Tshabalala, M.A. (2005) Cell wall chemistry. In: Handbook of Wood Chemistry and Wood Composites. Ed. Rowell, R.M. CRC Press, Boca Raton, Florida. pp. 35–74.10.1201/9780203492437-7Search in Google Scholar

Ryushi, T., Kita, I., Sakurai, T., Yasumatsu, M., Isokawa, M., Aihara, Y., Hama, K. (1998) The effect of exposure to negative air ions on the recovery of physiological responses after moderate endurance exercise. Int. J. Biometeorol. 41:132–136.10.1007/s004840050066Search in Google Scholar PubMed

Sirota, T., Safronova, V., Amelina, A., Mal’tseva, V., Avkhacheva, N., Sofin, A., Yanin, V., Mubarakshina, E., Romanova, L., Novoselov, V. (2008) The effect of negative air ions on the respiratory organs and blood. Biophysics 53:457–462.10.1134/S0006350908050242Search in Google Scholar

Stankovich, S., Piner, R.D., Chen, X., Wu, N., Nguyen, S.T., Ruoff, R.S. (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). J. Mater. Chem. 16:155–158.10.1039/B512799HSearch in Google Scholar

Su, C., Liu, L., Zhang, M., Zhang, Y., Shao, C. (2012) Fabrication of Ag/TiO2 nanoheterostructures with visible light photocatalytic function via a solvothermal approach. CrystEngComm. 14:3989–3999.10.1039/c2ce25161bSearch in Google Scholar

Tachikawa, T., Yamashita, S., Majima, T. (2011) Evidence for crystal-face-dependent TiO2 photocatalysis from single-molecule imaging and kinetic analysis. J. Am. Chem. Soc. 133:7197–7204.10.1021/ja201415jSearch in Google Scholar PubMed

Teoh, W.Y., Scott, J.A., Amal, R. (2012) Progress in heterogeneous photocatalysis: from classical radical chemistry to engineering nanomaterials and solar reactors. J. Phys. Chem. Lett. 3:629–639.10.1021/jz3000646Search in Google Scholar PubMed

Tom, G., Poole, M.F., Galla, J., Berrier, J. (1981) The influence of negative air ions on human performance and mood. Hum. Factors 23:633–636.10.1177/001872088102300513Search in Google Scholar PubMed

Wu, Y., Jia, S., Qing, Y., Luo, S., Liu, M. (2016) A versatile and efficient method to fabricate durable superhydrophobic surfaces on wood, lignocellulosic fiber, glass, and metal substrates. J. Mater. Chem. A. 4:14111–14121.10.1039/C6TA05259BSearch in Google Scholar

Xiong, L., Ouyang, M., Yan, L., Li, J., Qiu, M., Yu, Y. (2009) Visible-light energy storage by Ti3+ in TiO2/Cu2O bilayer film. Chem. Lett. 38:1154–1155.10.1246/cl.2009.1154Search in Google Scholar

Yaglou, C. (1937) Physical and physiologic principles of air conditioning. J. Am. Med. Assoc. 108:1708–1713.10.1001/jama.1937.92780200005008Search in Google Scholar

Zhang, H., Lv, X., Li, Y., Wang, Y., Li, J. (2009) P25-graphene composite as a high performance photocatalyst. ACS Nano. 4:380–386.10.1021/nn901221kSearch in Google Scholar PubMed

Zhang, Y., Tang, Z.R., Fu, X., Xu, Y.J. (2010) TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2-carbon composite materials? ACS Nano. 4:7303–7314.10.1021/nn1024219Search in Google Scholar PubMed

Received: 2018-05-05
Accepted: 2018-09-03
Published Online: 2018-10-01
Published in Print: 2019-04-24

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hf-2018-0107/pdf
Scroll to top button