Startseite Synthesis and molecular structure of (Z)-1H-purin-6-ylideneaminooxysulfonic acid: a possible secondary metabolite of adenine
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis and molecular structure of (Z)-1H-purin-6-ylideneaminooxysulfonic acid: a possible secondary metabolite of adenine

  • Jarosław Sączewski EMAIL logo und Maria Gdaniec
Veröffentlicht/Copyright: 1. August 2012

Abstract

The reaction of 6-chloropurine (1) with fourfold excess of hydroxylamine-O-sulfonic acid (HOSA) provided (Z)-1H-purin-6-ylideneaminooxysulfonic acid (2) which can be regarded as a secondary metabolite of ultimate mutagen 6-hydroxylaminopurine (6-HAP). A similar reaction of 1 with twofold excess of HOSA gave a mixture of the substrate and the betaine product which co-crystallized from DMF-methanol-water in the form of complex 3 that proved to be a 1:1 complex 1·2 with offset face-to-face π-stacking interactions between purine rings.


Corresponding author: Jarosław Sączewski, Department of Chemical Technology of Drugs, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland

References

Birnbaum, G. I.; Kierdaszuk, B.; Shugar, D. Tautomerism and conformation of the promutagenic analogue N6-methoxy-2′,3′,5′-tri-O-methyladenosine. Nucleic Acid Res.1984, 12, 2447–2460.10.1093/nar/12.5.2447Suche in Google Scholar PubMed PubMed Central

Clement, B.; Kunze, T. Hepatic microsomal N-hydroxylation of adenine to 6-N-hydroxylaminopurine. Biochem. Pharmacol. 1990, 39, 925–933.10.1016/0006-2952(90)90209-4Suche in Google Scholar PubMed

Erdik, E. Hydroxylamine-O-sulfonic acid. In e-EROS Encyclopedia of Reagents for Organic Synthesis.Suche in Google Scholar

Farrugia, L. J. ORTEP-3 for Windows. J. Appl. Cryst. 1997, 30, 565.10.1107/S0021889897003117Suche in Google Scholar

Gilissen, R. A. H. J.; Bamforth, K. J.; Stavenuiter, J. F. C.; Coughtrie, M. W. H.; Meerman, J. N. H. Sulfation of aromatic hydroxamic acids and hydroxylamines by multiple forms of human liver sulfotransferases. Carcinogenesis1994, 15, 39–45.10.1093/carcin/15.1.39Suche in Google Scholar PubMed

Glatt, H. Bioactivation of mutagens via sulfation. FASEB J. 199711, 314–321.10.1096/fasebj.11.5.9141497Suche in Google Scholar PubMed

Glatt, H.; Pabel, U.; Meinl, W.; Frederiksen, H.; Frandsen, H.; Muckel, E. Bioactivation of the heterocyclic aromatic amine 2-amino-3-methyl-9H-pyrido[2,3-b]indole (MeAαC) in recombinant test systems expressing human xenobiotic-metabolizing enzymes. Carcinogenesis 2004, 25, 801–804.10.1093/carcin/bgh077Suche in Google Scholar PubMed

Gorrod, J. W.; Ioannides, C.; Lam, S. P.; Neville, S. Mutagenicity testing of 9-N-substituted adenines and their N-oxidation products. Environ. Health Perspect. Suppl. 1993, 101 (Suppl. 3), 21–26.10.1289/ehp.93101s321Suche in Google Scholar PubMed PubMed Central

Kato, R.; Kamataki, T.; Yamazoe, Y. N-Hydroxylation of carcinogenic and mutagenic aromatic amines. Environ. Health Perspect. 1983, 49, 21–25.10.1289/ehp.834921Suche in Google Scholar PubMed PubMed Central

Khromov-Borisov, N. N. Naming the mutagenic nucleic acid base analogs: the Galatea syndrome. Mutat. Res. Fundam. Mol. Mechan. Mutagenesis 1997, 379, 95–103.10.1016/S0027-5107(97)00112-7Suche in Google Scholar

Oxford Diffraction. CrysAlis Pro software, ver. 1.171.34, Oxford Diffraction Ltd: Yarnton, Oxfordshire, 2010.Suche in Google Scholar

Saczewski, J.; Gdaniec, M.; Bednarski, P. J.; Makowska, A. Synthesis of aza-aromatic hydroxylamine-O-sulfonates and their application to tandem nucleophilic addition-electrophilic 5-endo-trig cyclization. Tetrahedron 2011, 67, 3612–3618.10.1016/j.tet.2011.03.091Suche in Google Scholar

Sekiguchi, M.; Tsuzuki, T. Oxidative nucleotide damage: consequences and prevention. Oncogene 2002, 16, 8895–8904.10.1038/sj.onc.1206023Suche in Google Scholar PubMed

Shamovsky, I.; Ripa, L.; Borjesson, L.; Mee, Ch.; Norden, B.; Hansen, P.; Hasselgren, C.; O'Donovan, M.; Sjo, P. Explanation for main features of structure_genotoxicity relationships of aromatic amines by theoretical studies of their activation pathways in CYP1A2. J. Am. Chem. Soc. 2011, 133, 16168–16185.10.1021/ja206427uSuche in Google Scholar PubMed

Sheldrick, G. M. A short history of SHELX. Acta Cryst. 2008, A64, 112–122.10.1107/S0108767307043930Suche in Google Scholar PubMed

Simandan, T.; Sun, J.; Dix, T. A. Oxidation of DNA bases, deoxyribonucleosides and homopolymers by peroxyl radicals. Biochem. J. 1998, 335, 233–240.10.1042/bj3350233Suche in Google Scholar PubMed PubMed Central

Stepchenkova, E. I.; Kozmin, S. G.; Alenin, V. V.; Pavlov, Y. I. Genetic control of metabolism of mutagenic purine base analogs 6-hydroxylaminopurine and 2-amino-6-hydroxylaminopurine in yeast Saccharomyces cerevisiae. Russ. J. Genetics 2009, 45, 409–414.10.1134/S1022795409040048Suche in Google Scholar

Sugimura, T.; Sato, S. Mutagens-carcinogens in foods. Cancer Res. 1983, 43, 2415s–2421s.Suche in Google Scholar

Turesky, R. J. Aromatic Amines and Heterocyclic Aromatic Amines: From Tobacco Smoke to Food Mutagens. In The Chemical Biology of DNA Damage; Geacintov, N. E., Broyde, S., Eds. Wiley-VCH Verlag: Weinheim, 2010, pp. 157–183.10.1002/9783527630110.ch7Suche in Google Scholar

Watabe, T.; Hiratsuka, A.; Ogura, K.; Endoh, K. A reactive hydroxymethyl sulfate ester formed regioselectively from the carcinogen, 7,12-dihydroxymethylbenz[a]anthracene, by rat liver sulfotransferase. Biochem. Biophys. Res. Commun. 1985, 131, 694–699.10.1016/0006-291X(85)91293-8Suche in Google Scholar

Yi, L.; Dratter, J.; Wang, Ch.; Tunge, J. A.; Desaire, H. Identification of sulfation sites of metabolites and prediction of the compounds biological effects. Anal. Bioanal. Chem. 2006, 386, 666–674.10.1007/s00216-006-0495-1Suche in Google Scholar PubMed PubMed Central

Received: 2012-06-07
Accepted: 2012-06-23
Published Online: 2012-08-01
Published in Print: 2012-08-01

©2012 Walter de Gruyter GmbH & Co. KG, Berlin/Boston

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hc-2012-0094/html
Button zum nach oben scrollen