Startseite Synthesis of novel fluorescent 1,3,5-trisubstituted triazine derivatives and photophysical property evaluation of fluorophores and their BSA conjugates
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis of novel fluorescent 1,3,5-trisubstituted triazine derivatives and photophysical property evaluation of fluorophores and their BSA conjugates

  • Vikas S Padalkar , Vikas S. Patil , Rahul D. Telore und Nagaiyan Sekar EMAIL logo
Veröffentlicht/Copyright: 1. August 2012

Abstract

Cyanuric chloride was allowed to react with N,N-diethylaniline to obtain 4-(4,6-dichloro-1,3,5-triazin-2-yl)-N,N-diethylaniline, which was converted into six novel 1,3,5-trisubstituted triazine derivatives on reaction with different amino acids. These compounds had UV absorption in the range 352–379 nm, accompanied by intense single emission in the range 420–497 nm with fairly good quantum yield (0.106–0.383). The new compounds were characterized by FT-IR, 1H NMR, 13C NMR, mass spectral, and elemental analyses. These fluorophores were conjugated with protein bovine serum albumin through carbodiimide chemistry between the negatively charged carboxylate groups (-COO-) of the fluorophore and the surface terminated positively charged amino groups (-NH3+) of the protein. The interaction between functionalized amino acids with protein molecules was investigated using fluorescence spectroscopy showing fluorescence enhancement or quenching of the fluorophore after conjugation.


Corresponding author: Nagaiyan Sekar, Institute of Chemical Technology (Formerly UDCT), N.P. Marg, Matunga, Mumbai 400 019, Maharashtra, India

References

Arai, S.; Yoon, S.; Murata, A.; Takabayashi, M.; Wud, X.; Lu, Y.; Takeoka, S.; Ozaki, M. Fluorescent “Turn-on” system utilizing a quencher-conjugated peptide for specific protein labeling of living cells. Biochem. Biophys. Res. Commun. 2011, 404, 211–216.10.1016/j.bbrc.2010.11.095Suche in Google Scholar PubMed

Birch, D. Multi-photon excited fluorescence spectroscopy of biomolecular systems. Spectrochem. Acta A. 2001, 57, 23132336.10.1016/S1386-1425(01)00487-5Suche in Google Scholar PubMed

Cao, X.; Lin, W.; Yu, Q. A ratiometric fluorescent probe for thiols based on a tetrakis(4-hydroxyphenyl)porphyrin-coumarin scaffold. J. Org. Chem. 2011, 76, 7423–7430.10.1021/jo201199kSuche in Google Scholar PubMed

Cheng, J. M. H.; Chee, S. H.; Knight, D. A.; Acha-Orbea, H.; Hermans, I.; Timmer, M. S. M.; Stocker, B. L. An improved synthesis of dansylated α-galactosylceramide and its use as a fluorescent probe for the monitoring of glycolipid uptake by cells. Carbohydr. Res. 2011, 346, 914926.10.1016/j.carres.2011.02.014Suche in Google Scholar PubMed

Chiu, D.; Lillard, S.; Scheller, R.; Zare, R.; Rodriguez-Cruz, S.; Williams, E.; Orwar, O.; Sandberg, M.; Lundqvist, J. Probing single secretory vesicles with capillary electrophoresis. Science 1998, 279, 11901193.10.1126/science.279.5354.1190Suche in Google Scholar PubMed

Cowley, D.; O'Kane, E.; Todd, R. Triazinylaniline derivatives as fluorescence probes. Part 1. Absorption and fluorescence in organic solvents and in aqueous media in relation to twisted intramolecular charge-transfer state formation, hydrogen bonding, and protic equilibria. J. Chem. Soc., Perkin Trans. 1991, 2, 1495–1504.10.1039/p29910001495Suche in Google Scholar

Diamandis, E. Fluorescence spectroscopy. Anal. Chem. 1993, 65, 454R459R.10.1021/ac00060a616Suche in Google Scholar

DiCesare, N.; Lakowicz, J. Evaluation of two synthetic glucose probes for fluorescence-lifetime-based sensing. Anal. Biochem. 2001, 294, 154160.10.1006/abio.2001.5170Suche in Google Scholar PubMed PubMed Central

Duan, Y.; Liu, M.; Sun, W.; Wang, M.; Liu, S.; Li, Q. Recent progress on synthesis of fluorescein probes. Mini. Rev. Org. Chem. 2009, 6, 35–43.10.2174/157019309787316111Suche in Google Scholar

Flanagan, J.; Legendre, B.; Hammer, R.; Soper, S. Binary solvent effects in capillary zone electrophoresis with ultrasensitive near-IR fluorescence detection of related tricarbocyanine dyes and dye-labeled amino acids. Anal. Chem. 1995, 67, 341347.10.1021/ac00098a018Suche in Google Scholar

Fuller, R. R.; Moroz, L. L.; Gillette, R.; Sweedler, J. V. Serotonin and related molecules in single neurons: direct analysis of intracellular concentrations by capillary electrophoresis with fluorescence spectroscopy. Neuron 1998, 20, 173181.10.1016/S0896-6273(00)80446-8Suche in Google Scholar PubMed

Gosling, J. A decade of development in immunoassay methodology. Clin. Chem. 1990, 36, 14081427.10.1093/clinchem/36.8.1408Suche in Google Scholar

Gupta, V.; Padalkar, V.; Phtangare, K.; Patil, V.; Umape, P.; Sekar, N. Synthesis and photo-physical properties of extended styryl fluorescent derivatives of N-ethyl carbazole. Dyes Pigments 2011, 88, 378384.10.1016/j.dyepig.2010.08.013Suche in Google Scholar

Han, J.; Burgess, K. Fluorescent indicators for intracellular pH. Chem. Rev. 2010, 110, 27092728.10.1021/cr900249zSuche in Google Scholar PubMed

Haughland, R. Handbook of Fluorescent Probes and Research Chemicals; Molecular Probes: Eugene, OR, 1992.Suche in Google Scholar

Haughland, R. Introduction to Fluorescence Technique; Molecular Probes Inc.: Eugene, OR, 1996.Suche in Google Scholar

Hegaard, N.; Nilsson, S.; Guzman, N. Use of mobility ratios to estimate binding constants and some recent developments. Chromatogr. J. B 1998, 715, 2954.10.1016/S0378-4347(98)00258-8Suche in Google Scholar

Kessler, M.; Wolfbeis, O. Laser-induced fluorometric determination of albumin using longwave absorbing molecular probes. Anal. Biochem. 1992, 200, 254259.10.1016/0003-2697(92)90462-GSuche in Google Scholar

Krylov, S. N.; Starke, D. A.; Arriaga, E. A.; Zhang, Z.; Chan, N. W.; Palcic, M. M.; Dovichi, N. J. Instrumentation for chemical cytometry. Anal. Chem. 2000, 72, 872877.10.1021/ac991096mSuche in Google Scholar PubMed

Liebes, L.; Conaway, C. C.; Hochster, H.; Mendoza, S.; Hecht, S. S.; Crowell, J.; Chung, F. L. High-performance liquid chromatography-based determination of total isothiocyanates levels in human plasma: application to studies with 2-phenylethyl isothiocyanates. Anal. Biochem. 2001, 291, 279289.10.1006/abio.2001.5030Suche in Google Scholar PubMed

Lu, J.; Sun, C.; Chen, W.; Ma, H.; Shi, W.; Li, X. Determination of non-protein cysteine in human serum by a designed BODIPY-based fluorescent probe catalyst. Talanta 2011, 83, 10501056.10.1016/j.talanta.2010.11.023Suche in Google Scholar PubMed

Mason, W. Fluorescent and Luminescent Probes for Biological Activity; Academic Press: London, 1993.Suche in Google Scholar

Moreno, F.; Cortijo, M.; González-Jiménez, J. Interaction of acrylodan with human serum albumin: a fluorescence spectroscopic study. J. Photochem. Photobiol. 1999, 70, 695700.10.1111/j.1751-1097.1999.tb08272.xSuche in Google Scholar

Okerberg, E.; Shear, J. B. Neuropeptide analysis using capillary electrophoresis with multiphoton-excited intrinsic fluorescence detection. Anal. Biochem. 2001, 292, 311313.10.1006/abio.2001.5090Suche in Google Scholar PubMed

Padalkar, V.; Patil, V.; Gupta, V.; Sekar, N.; Phatangare, K. Synthesis and biological evaluation of novel 6-aryl-2,4-disubstituted Schiff's base 1,3,5-triazine derivatives as antimicrobial agents. Res. Pharm. Biol. Chem. Sci. 2011, 2, 908917.Suche in Google Scholar

Padalkar, V.; Sekar, N.; Tathe, A.; Gupta, A.; Phatangare, K.; Patil, V. Synthesis and photo-physical characteristics of ESIPT inspired 2-substituted benzimidazole, benzoxazole and benzothiazole fluorescent derivatives. J. Fluoresc. 2012, 22, 311322.10.1007/s10895-011-0962-8Suche in Google Scholar PubMed

Parhi, A.; Kung, M.; Ploessl, K.; Kung, H. Synthesis of fluorescent probes based on stilbens and diphenylacetylenes targeting β-amyloid plaques. Tetrahedron Lett. 2008, 49, 33953399.10.1016/j.tetlet.2008.03.130Suche in Google Scholar PubMed PubMed Central

Parul, D.; Bokut, S.; Milyutin, A.; Petrov, E.; Nemkovich, N.; Sobchuk, A.; Dzhagarov, B. Time-resolved fluorescence reveals two binding sites of 1,8-ANS in intact human oxyhemoglobin. J. Photochem. Photobiol. B: Biol. 2000, 58, 156162.10.1016/S1011-1344(00)00122-6Suche in Google Scholar PubMed

Patil, V.; Padalkar, V.; Gupta, V.; Phtangare, K.; Umape, P.; Sekar, N. Synthesis of new ESIPT-fluorescein: photophysics of pH sensitivity and fluorescence. J. Phys. Chem. A 2012, 116, 536545.10.1021/jp2073123Suche in Google Scholar PubMed

Perron, A.; Mutoh, H.; Launey, T.; Knopfel, T. Red-shifted voltage-sensitive fluorescent proteins. Chem. Biol. 2009, 16, 12681277.10.1016/j.chembiol.2009.11.014Suche in Google Scholar PubMed PubMed Central

Sartor, G.; Pagani, R.; Ferrari, E.; Sorbi, R.; Cavaggioni, A.; Cavatorta, P.; Spisni, A. Determining the binding capability of the mouse major urinary proteins using 2-naphthol as a fluorescent probe. Anal. Biochem. 2001, 292, 6975.10.1006/abio.2001.5065Suche in Google Scholar PubMed

Sekar, N.; Raut, R.; Umape, P. Near infrared absorbing iron-complexed colorants for photovoltaic applications. Mater. Sci. Eng. B 2010, 168, 259262.10.1016/j.mseb.2010.01.018Suche in Google Scholar

Sekar, N.; Padalkar, V.; Patil, V.; Phtangare, K.; Gupta, V.; Umape, P. Synthesis of nanodispersible 6-aryl-2,4-diamino-1,3,5-triazine and its derivatives. Mater. Sci. Eng. B 2011, 170, 7787.10.1016/j.mseb.2010.02.033Suche in Google Scholar

Singh, K. V.; Kaur, J.; Varshney, G.; Raje, M.; Suri, R. Synthesis and characterization of hepatan-protein conjugate for antibody production against small molecules. Bioconj. Chem. 2004, 15, 168173.10.1021/bc034158vSuche in Google Scholar PubMed

Song, L.; Varma, C.; Verhoeven, J.; Tanke, H. Influence of the triplet excited state on the photobleaching kinetics of fluorescein in microscopy. Biophys. J. 1996, 70, 29592968.10.1016/S0006-3495(96)79866-1Suche in Google Scholar PubMed PubMed Central

Sun, W.; Gee, K.; Haugland, R. Synthesis of novel fluorinated coumarins: excellent UV-light excitable fluorescent dyes. Bioorg. Med. Chem. Lett. 1998, 8, 31073110.10.1016/S0960-894X(98)00578-2Suche in Google Scholar PubMed

Sytnik, A.; Kasha, M. Excited-state intramolecular proton transfer as fluorescence probe for protein binding-site static polarity. Proc. Natl. Acad. Sci. USA 1994, 91, 86278630.10.1073/pnas.91.18.8627Suche in Google Scholar PubMed PubMed Central

Sytnik, A.; Gormin, D.; Kasha, M. Interplay between excited-state intramolecular proton transfer and charge transfer in flavones and their use as protein-binding-site fluorescence probes. Proc. Natl. Acad. Sci. USA 1994, 91, 1196811972.10.1073/pnas.91.25.11968Suche in Google Scholar PubMed PubMed Central

Sytnik, A.; Litvinyuk, I. Energy transfer to a proton-transfer fluorescence probe: tryptophan to a flavonol in human serum albumin. Proc. Natl. Acad. Sci. USA 1996, 93, 1295912963.10.1073/pnas.93.23.12959Suche in Google Scholar PubMed PubMed Central

Talavera, E. M.; Afkir, M.; Salto, R.; Vargas, A. M.; Alvarez-Pez, J. M. Fluorescence-labelled DNA probes to detect complementary sequences in homogeneous media. J. Photochem. Photobiol. B 2000,59, 914.10.1016/S1011-1344(00)00127-5Suche in Google Scholar PubMed

Timtcheva, I.; Maximova, V.; Deligeorgiev, T.; Gadjev, N.; Drexhage, K.; Petkova, I. Homodimeric monomethine cyanine dyes as fluorescent probes of biopolymers. J. Photochem. Photobiol. B Biol. 2000, 58, 130135.10.1016/S1011-1344(00)00116-0Suche in Google Scholar

Wang, C.; Wu, C.; Zhu, J.; Miller, R. H.; Wang, Y. Design, synthesis, and evaluation of coumarin-based molecular probes for imaging of myelination. J. Med. Chem. 2011, 54, 23312340.10.1021/jm101489wSuche in Google Scholar PubMed PubMed Central

Zhang, X.; Neamati, N.; Lee, Y.; Orr, A.; Brown, R.; Whitaker, N.; Pommier, Y. Arylisothiocyanate-containing esters of caffeic acid designed as affinity ligands for HIV-1 integrase. J. Bioorg. Med. Chem. 2001, 2, 16491657.10.1016/S0968-0896(01)00075-XSuche in Google Scholar PubMed

Received: 2012-02-03
Accepted: 2012-04-02
Published Online: 2012-08-01
Published in Print: 2012-08-01

©2012 Walter de Gruyter GmbH & Co. KG, Berlin/Boston

Heruntergeladen am 24.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hc-2012-0024/html
Button zum nach oben scrollen