Startseite (σ, τ)-amenability of C*-algebras
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

(σ, τ)-amenability of C*-algebras

  • Madjid Mirzavaziri EMAIL logo und Mohammad Sal Moslehian
Veröffentlicht/Copyright: 6. April 2011
Veröffentlichen auch Sie bei De Gruyter Brill
Georgian Mathematical Journal
Aus der Zeitschrift Band 18 Heft 1

Abstract

Suppose that is an algebra, σ, τ : are two linear mappings such that both σ() and τ() are subalgebras of and 𝒳 is a (τ(), σ())-bimodule. A linear mapping D : → 𝒳 is called a (σ, τ)-derivation if D(ab) = D(a) · σ(b) + τ(a) · D(b) (a, b). A (σ, τ)-derivation D is called a (σ, τ)-inner derivation if there exists an x ∈ 𝒳 such that D is of the form either or . A Banach algebra is called (σ, τ)-amenable if every (σ, τ)-derivation from into a dual Banach (τ(), σ())-bimodule is (σ, τ)-inner.

Studying some general algebraic aspects of (σ, τ)-derivations, we investigate the relation between the amenability and the (σ, τ)-amenability of Banach algebras in the case where σ, τ are homomorphisms. We prove that if 𝔄 is a C*-algebra and σ, τ are *-homomorphisms with ker(σ) = ker(τ), then 𝔄 is (σ, τ)-amenable if and only if σ(𝔄) is amenable.

Received: 2009-03-06
Revised: 2009-07-20
Published Online: 2011-04-06
Published in Print: 2011-March

© de Gruyter 2011

Heruntergeladen am 6.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj.2011.0013/pdf
Button zum nach oben scrollen