Startseite Modeling and numerical analysis of a viscoelastic contact problem for locking materials with time-fractional derivatives
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Modeling and numerical analysis of a viscoelastic contact problem for locking materials with time-fractional derivatives

  • Jinxia Cen , Mustapha Bouallala ORCID logo EMAIL logo und Abdesadik Bendarag
Veröffentlicht/Copyright: 29. August 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This article explores a new contact problem involving viscoelastic materials locked with a rigid foundation. The constitutive relation in our study is constructed using a fractional Kelvin–Voigt model to describe displacement behavior. The contact is characterized by a variation of the Signorini condition, while friction is modeled by a nonlocal Coulomb’s friction law. We present the mathematical model for the viscoelastic process, provide the variational formulation, and establish the existence of a solution. We present fully discrete finite element schemes for the variational problem and derive error estimates for the approximations.

Award Identifier / Grant number: 12371312

Funding statement: This project has received funding from the Natural Science Foundation of Guangxi Grant Nos. 2021GXNSFFA196004 and 2024GXNSFBA010337, the National Natural Science Foundation of China Grant No. 12371312, the Natural Science Foundation of Chongqing Grant No. CSTB2024NSCQ-JQX0033. It is also supported by the Postdoctoral Fellowship Program of CPSF under Grant Number GZC20241534, the Systematic Project of Center for Applied Mathematics of Guangxi (Yulin Normal University) Nos. 2023CAM002 and 2023CAM003.

A Appendix

Now, let us revisit the established definitions in fractional calculus theory and nonlinear analysis, given in references [14, 16, 27, 22].

Definition A.1 (Riemann–Liouville fractional integral).

Let X be a Banach space and ( 0 , T ) a finite time interval. The Riemann–Liouville fractional integral of order α > 0 for a given function f L 1 ( 0 , T ; X ) is defined by

I t α 0 f ( t ) = 1 Γ ( α ) 0 t ( t - s ) α - 1 f ( s ) 𝑑 s for all  t ( 0 , T ) ,

where Γ ( ) stands for the Gamma function defined by

Γ ( α ) = 0 t α - 1 e - t 𝑑 t .

To further elaborate on the definition, we introduce I t 0 0 = I , where I represents the identity operator. This implies that I t 0 0 f ( t ) = f ( t ) for almost every t ( 0 , T ) .

Definition A.2 (Caputo derivative of order, 0 < α 1 ).

Let X be a Banach space, 0 < α 1 and ( 0 , T ) a finite time interval. For a given function f A C ( 0 , T ; W ) , the Caputo fractional derivative of f is defined by

D t α 0 C f ( t ) = I t 1 - α 0 f ( t ) = 1 Γ ( 1 - α ) 0 t ( t - s ) - α f ( s ) 𝑑 s for all  t ( 0 , T ) .

The notation A C ( 0 , T ; X ) refers to the space of all absolutely continuous functions from ( 0 , T ) into X.

It is obvious that if α = 1 , the Caputo derivative reduces to the classical first-order derivative, that is, we have

D t 1 0 C f ( t ) = I f ( t ) = f ( t ) for a.e.  t ( 0 , T ) .

Lemma A.3.

Let T > 0 be given. For a positive integer N, define k = T N . Assume that { g n } n = 1 N and { e n } n = 1 N are two sequences of nonnegative numbers satisfying

e n c g n + c j = 1 n k e j , n = 1 , , N ,

for a positive constant c independent of N or k. Then there exists a positive constant c, independent of N and k, such that

max 1 n N e n c max 1 n N g n .

Acknowledgements

The authors wish to thank the two knowledgeable referees for their corrections and helpful remarks.

References

[1] Y. Ayyad, M. Barboteu and J. R. Fernández, A frictionless viscoelastodynamic contact problem with energy consistent properties: Numerical analysis and computational aspects, Comput. Methods Appl. Mech. Engrg. 198 (2009), no. 5–8, 669–679. 10.1016/j.cma.2008.10.004Suche in Google Scholar

[2] M. Barboteu, W. Han and S. Migórski, On numerical approximation of a variational-hemivariational inequality modeling contact problems for locking materials, Comput. Math. Appl. 77 (2019), no. 11, 2894–2905. 10.1016/j.camwa.2018.08.004Suche in Google Scholar

[3] M. Bouallala, Variational and error estimation for a frictionless contact problem in thermo-viscoelasticity with time fractional derivatives, Commun. Anal. Comput. 2 (2024), no. 1, 1–18. 10.3934/cac.2024001Suche in Google Scholar

[4] M. Bouallala and E.-H. Essoufi, A thermo-viscoelastic fractional contact problem with normal compliance and Coulomb’s friction, J. Math. Phys. Anal. Geom. 17 (2021), no. 3, 280–294. 10.15407/mag17.03.280Suche in Google Scholar

[5] M. Bouallala, E.-H. Essoufi, V. T. Nguyen and W. Pang, A time-fractional of a viscoelastic frictionless contact problem with normal compliance, European Phys. J. Spec. Topics 232 (2023), no. 14, 2549–2558. 10.1140/epjs/s11734-023-00962-xSuche in Google Scholar

[6] S. Bourichi and E.-H. Essoufi, Penalty method for an unilateral contact problem with Coulomb’s friction for locking materials, Int. J. Math. Model. Comput. 6 (2016), no. 1, 61–81. Suche in Google Scholar

[7] F. Demengel, Displacements bounded deformation and measures stress, Annals of Superior School of Pise, 1972. Suche in Google Scholar

[8] F. Demengel and P. Suquet, On locking materials, Acta Appl. Math. 6 (1986), no. 2, 185–211. 10.1007/BF00046725Suche in Google Scholar

[9] M. Di Paola, R. Heuer and A. Pirrotta, Fractional visco-elastic Euler–Bernoulli beam, Internat. J. Solids Structures 50 (2013), no. 22–23, 3505–3510. 10.1016/j.ijsolstr.2013.06.010Suche in Google Scholar

[10] C. Eck and J. Jarušek, Existence results for the static contact problem with Coulomb friction, Math. Models Methods Appl. Sci. 8 (1998), no. 3, 445–468. 10.1142/S0218202598000196Suche in Google Scholar

[11] L. Essafi and M. Bouallala, Penalty method for unilateral contact problem with Coulomb’s friction in time-fractional derivatives, Demonstr. Math. 57 (2024), no. 1, Article ID 20240050. 10.1515/dema-2024-0050Suche in Google Scholar

[12] E.-H. Essoufi and A. Zafrar, Dual methods for frictional contact problem with electroelastic-locking materials, Optimization 70 (2021), no. 7, 1581–1608. 10.1080/02331934.2020.1745794Suche in Google Scholar

[13] Z. Faiz, O. Baiz and H. Benaissa, Penalization of a frictional thermoelastic contact problem with generalized temperature dependent conditions, Rend. Circ. Mat. Palermo (2) 74 (2025), no. 1, Paper No. 74. 10.1007/s12215-025-01195-8Suche in Google Scholar

[14] W. Han and M. Sofonea, Evolutionary variational inequalities arising in viscoelastic contact problems, SIAM J. Numer. Anal. 38 (2000), no. 2, 556–579. 10.1137/S0036142998347309Suche in Google Scholar

[15] C. Ionescu, A. Lopes, D. Copot, J. A. T. Machado and J. H. T. Bates, The role of fractional calculus in modeling biological phenomena: A review, Commun. Nonlinear Sci. Numer. Simul. 51 (2017), 141–159. 10.1016/j.cnsns.2017.04.001Suche in Google Scholar

[16] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Math. Stud. 204, Elsevier Science, Amsterdam, 2006. Suche in Google Scholar

[17] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity—An Introduction to Mathematical Models, World Scientific, Hackensack, 2022. Suche in Google Scholar

[18] J. A. C. Martins and J. T. Oden, Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws, Nonlinear Anal. 11 (1987), no. 3, 407–428. 10.1016/0362-546X(87)90055-1Suche in Google Scholar

[19] S. Migórski and J. Ogorzały, A variational-hemivariational inequality in contact problem for locking materials and nonmonotone slip dependent friction, Acta Math. Sci. Ser. B (Engl. Ed.) 37 (2017), no. 6, 1639–1652. 10.1016/S0252-9602(17)30097-8Suche in Google Scholar

[20] J. Nečas and I. Hlaváček, Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction, Stud. Appl. Mech. 3, Elsevier, Amsterdam, 1980. Suche in Google Scholar

[21] J. T. Oden and E. B. Pires, Nonlocal and nonlinear friction laws and variational principles for contact problems in elasticity, Trans. ASME Ser. E. J. Appl. Mech. 50 (1983), no. 1, 67–76. 10.1115/1.3167019Suche in Google Scholar

[22] I. Podlubny, Fractional Differential Equations, Math. Sci. Eng. 198, Academic Press, San Diego, 1999. Suche in Google Scholar

[23] W. Prager, Elastic solids of limited compressibility, Proc. Int. Congr. Appl. Mech. Brussels 1956 (1956), 205–211. Suche in Google Scholar

[24] W. Prager, On ideal locking materials, Trans. Soc. Rheology 1 (1957), no. 1, 169–175. 10.1122/1.548818Suche in Google Scholar

[25] W. Prager, On elastic, perfectly locking materials, Applied Mechanics, Proceedings of the 11th International Congress of Applied Mechanics (Munich 1964), Springer, Berlin (1966), 538–544. 10.1007/978-3-662-29364-5_72Suche in Google Scholar

[26] A. G. Radwan, Resonance and quality factor of the R L α C α fractional circuit, IEEE J. Emerging Select. Topics Circuits Syst. 3 (2013), no. 3, 377–385. 10.1109/JETCAS.2013.2272838Suche in Google Scholar

[27] S. Shen, F. Liu, J. Chen, I. Turner and V. Anh, Numerical techniques for the variable order time fractional diffusion equation, Appl. Math. Comput. 218 (2012), no. 22, 10861–10870. 10.1016/j.amc.2012.04.047Suche in Google Scholar

[28] M. Sofonea, A nonsmooth static frictionless contact problem with locking materials, Anal. Appl. (Singap.) 16 (2018), no. 6, 851–874. 10.1142/S0219530518500215Suche in Google Scholar

[29] M. Sofonea, History-dependent inequalities for contact problems with locking materials, J. Elasticity 134 (2019), no. 2, 127–148. 10.1007/s10659-018-9684-3Suche in Google Scholar

[30] M. Sofonea and S. Migórski, Variational-Hemivariational Inequalities with Applications, Monogr. Res. Notes Math., CRC Press, Boca Raton, 2018. 10.1201/9781315153261Suche in Google Scholar

[31] S. Zeng, Z. Liu and S. Migorski, A class of fractional differential hemivariational inequalities with application to contact problem, Z. Angew. Math. Phys. 69 (2018), no. 2, Paper No. 36. 10.1007/s00033-018-0929-6Suche in Google Scholar

[32] S. Zeng and S. Migórski, A class of time-fractional hemivariational inequalities with application to frictional contact problem, Commun. Nonlinear Sci. Numer. Simul. 56 (2018), 34–48. 10.1016/j.cnsns.2017.07.016Suche in Google Scholar

[33] C. Zou, L. Zhang, X. Hu, Z. Wang, T. Wik and M. Pecht, A review of fractional-order techniques applied to lithium-ion batteries, lead-acid batteries, and supercapacitors, J. Power Sources 390 (2018), 286–296. 10.1016/j.jpowsour.2018.04.033Suche in Google Scholar

Received: 2025-01-06
Revised: 2025-03-29
Accepted: 2025-05-14
Published Online: 2025-08-29

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 6.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2025-2071/html?lang=de
Button zum nach oben scrollen