Abstract
For a bounded linear operator T on a complex Hilbert space
Funding statement: Supported by Distinguished Scientist Fellowship Program under Researchers Supporting Project number RSP2025R187, King Saud University, Riyadh, Saudi Arabia.
Acknowledgements
The authors sincerely appreciate the reviewer for his/her valuable comments and suggestions, which have greatly improved this paper. Additionally, the first author wishes to express her heartfelt gratitude for the support received from the Distinguished Scientist Fellowship Program under the Researchers Supporting Project number (RSP2025R187), King Saud University, Riyadh, Saudi Arabia.
References
[1] J. M. Aldaz, S. Barza, M. Fujii and M. S. Moslehian, Advances in operator Cauchy–Schwarz inequalities and their reverses, Ann. Funct. Anal. 6 (2015), no. 3, 275–295. 10.15352/afa/06-3-20Suche in Google Scholar
[2] M. W. Alomari, M. Sababheh, C. Conde and H. R. Moradi, Generalized Euclidean operator radius, Georgian Math. J. 31 (2024), no. 3, 369–380. 10.1515/gmj-2023-2079Suche in Google Scholar
[3] S. Bag, P. Bhunia and K. Paul, Bounds of numerical radius of bounded linear operators using t-Aluthge transform, Math. Inequal. Appl. 23 (2020), no. 3, 991–1004. 10.7153/mia-2020-23-76Suche in Google Scholar
[4] P. Bhunia, S. S. Dragomir, M. S. Moslehian and K. Paul, Lectures on Numerical Radius Inequalities, Infosys Sci. Found. Ser. Math. Sci., Springer, Cham, 2022. 10.1007/978-3-031-13670-2Suche in Google Scholar
[5] P. Bhunia and K. Paul, Development of inequalities and characterization of equality conditions for the numerical radius, Linear Algebra Appl. 630 (2021), 306–315. 10.1016/j.laa.2021.08.014Suche in Google Scholar
[6] P. Bhunia and K. Paul, Furtherance of numerical radius inequalities of Hilbert space operators, Arch. Math. (Basel) 117 (2021), no. 5, 537–546. 10.1007/s00013-021-01641-wSuche in Google Scholar
[7] P. Bhunia and K. Paul, New upper bounds for the numerical radius of Hilbert space operators, Bull. Sci. Math. 167 (2021), Article ID 102959. 10.1016/j.bulsci.2021.102959Suche in Google Scholar
[8] P. Bhunia and K. Paul, Proper improvement of well-known numerical radius inequalities and their applications, Results Math. 76 (2021), no. 4, Paper No. 177. 10.1007/s00025-021-01478-3Suche in Google Scholar
[9]
A. Bourhim and M. Mabrouk,
Numerical radius and product of elements in
[10] C. Conde, F. Kittaneh, H. R. Moradi and M. Sababheh, Numerical radii of operator matrices in terms of certain complex combinations of operators, Georgian Math. J. 31 (2024), no. 4, 575–586. 10.1515/gmj-2023-2112Suche in Google Scholar
[11] C. Conde, M. Sababheh and H. R. Moradi, Some weighted numerical radius inequalities, Indian J. Pure Appl. Math. (2025), 10.1007/s13226-025-00767-9. 10.1007/s13226-025-00767-9Suche in Google Scholar
[12] S. S. Dragomir, On the Boas–Bellman inequality in inner product spaces, Bull. Aust. Math. Soc. 69 (2004), no. 2, 217–225. 10.1017/S0004972700035954Suche in Google Scholar
[13] S. S. Dragomir and B. Mond, On the Boas-Bellman generalization of Bessel’s inequality in inner product spaces, Ital. J. Pure Appl. Math. (1998), no. 3, 29–35. Suche in Google Scholar
[14]
J. I. Fujii, M. Fujii, M. S. Moslehian and Y. Seo,
Cauchy-Schwarz inequality in semi-inner product
[15]
J. I. Fujii, M. Fujii and Y. Seo,
Operator inequalities on Hilbert
[16]
J. I. Fujii, M. Fujii and Y. Seo,
Buzano inequality in inner product
[17]
A. G. Ghazanfari and S. S. Dragomir,
Schwarz and Grüss type inequalities for
[18] I. H. Gümüş, H. R. Moradi and M. Sababheh, Operator inequalities via accretive transforms, Hacet. J. Math. Stat. 53 (2024), no. 1, 40–52. 10.15672/hujms.1160533Suche in Google Scholar
[19] M. Khosravi, R. Drnovšek and M. S. Moslehian, A commutator approach to Buzano’s inequality, Filomat 26 (2012), no. 4, 827–832. 10.2298/FIL1204827KSuche in Google Scholar
[20] F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math. 158 (2003), no. 1, 11–17. 10.4064/sm158-1-2Suche in Google Scholar
[21] F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math. 168 (2005), no. 1, 73–80. 10.4064/sm168-1-5Suche in Google Scholar
[22] R. K. Nayak, Weighted numerical radius inequalities for operator and operator matrices, Acta Sci. Math. (Szeged) 90 (2024), no. 1–2, 193–206. 10.1007/s44146-023-00103-9Suche in Google Scholar
[23]
W. L. Paschke,
Inner product modules over
[24] J. Pec̆arić, T. Furuta, J. Mićić Hot and Y. Seo, Mond–Pečarić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Monogr. Inequal. 1, ELEMENT, Zagreb, 2005. Suche in Google Scholar
[25] W. Rudin, Principles of Mathematical Analysis, 3rd ed., Int. Ser. Pure Appl. Math., McGraw-Hill, New York, 1976. Suche in Google Scholar
[26]
M. Sababheh, I. H. Gümüş and H. R. Moradi,
Further properties of PPT and
[27] A. Sheikhhosseini, M. Khosravi and M. Sababheh, The weighted numerical radius, Ann. Funct. Anal. 13 (2022), no. 1, Paper No. 3. 10.1007/s43034-021-00148-3Suche in Google Scholar
[28] T. Yamazaki, On upper and lower bounds for the numerical radius and an equality condition, Studia Math. 178 (2007), no. 1, 83–89. 10.4064/sm178-1-5Suche in Google Scholar
[29] A. Zamani, The weighted Hilbert–Schmidt numerical radius, Linear Algebra Appl. 675 (2023), 225–243. 10.1016/j.laa.2023.06.024Suche in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston