Startseite Power inequalities for weighted numerical radius and norm of operators
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Power inequalities for weighted numerical radius and norm of operators

  • Najla Altwaijry , Silvestru Sever Dragomir und Kais Feki EMAIL logo
Veröffentlicht/Copyright: 25. Juni 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

For a bounded linear operator T on a complex Hilbert space , we define the weighted real and imaginary parts of the operator T as t ( T ) := ( 1 - t ) T + t T and t ( T ) := ( 1 - t ) T - t T i for t [ 0 , 1 ] , where T denotes the adjoint operator of T. By setting T t := t ( T ) + i t ( T ) , we define the weighted norm T t := T t . Another weighted numerical radius is given by w ~ t ( T ) = sup { t ( e i φ T ) : φ } for t [ 0 , 1 ] . In this paper, we present new power inequalities for the weighted operator norm t and the weighted numerical radius w ~ t ( ) . Additionally, we discuss the special cases of the classical numerical radius and norm of Hilbert space operators.

Funding statement: Supported by Distinguished Scientist Fellowship Program under Researchers Supporting Project number RSP2025R187, King Saud University, Riyadh, Saudi Arabia.

Acknowledgements

The authors sincerely appreciate the reviewer for his/her valuable comments and suggestions, which have greatly improved this paper. Additionally, the first author wishes to express her heartfelt gratitude for the support received from the Distinguished Scientist Fellowship Program under the Researchers Supporting Project number (RSP2025R187), King Saud University, Riyadh, Saudi Arabia.

References

[1] J. M. Aldaz, S. Barza, M. Fujii and M. S. Moslehian, Advances in operator Cauchy–Schwarz inequalities and their reverses, Ann. Funct. Anal. 6 (2015), no. 3, 275–295. 10.15352/afa/06-3-20Suche in Google Scholar

[2] M. W. Alomari, M. Sababheh, C. Conde and H. R. Moradi, Generalized Euclidean operator radius, Georgian Math. J. 31 (2024), no. 3, 369–380. 10.1515/gmj-2023-2079Suche in Google Scholar

[3] S. Bag, P. Bhunia and K. Paul, Bounds of numerical radius of bounded linear operators using t-Aluthge transform, Math. Inequal. Appl. 23 (2020), no. 3, 991–1004. 10.7153/mia-2020-23-76Suche in Google Scholar

[4] P. Bhunia, S. S. Dragomir, M. S. Moslehian and K. Paul, Lectures on Numerical Radius Inequalities, Infosys Sci. Found. Ser. Math. Sci., Springer, Cham, 2022. 10.1007/978-3-031-13670-2Suche in Google Scholar

[5] P. Bhunia and K. Paul, Development of inequalities and characterization of equality conditions for the numerical radius, Linear Algebra Appl. 630 (2021), 306–315. 10.1016/j.laa.2021.08.014Suche in Google Scholar

[6] P. Bhunia and K. Paul, Furtherance of numerical radius inequalities of Hilbert space operators, Arch. Math. (Basel) 117 (2021), no. 5, 537–546. 10.1007/s00013-021-01641-wSuche in Google Scholar

[7] P. Bhunia and K. Paul, New upper bounds for the numerical radius of Hilbert space operators, Bull. Sci. Math. 167 (2021), Article ID 102959. 10.1016/j.bulsci.2021.102959Suche in Google Scholar

[8] P. Bhunia and K. Paul, Proper improvement of well-known numerical radius inequalities and their applications, Results Math. 76 (2021), no. 4, Paper No. 177. 10.1007/s00025-021-01478-3Suche in Google Scholar

[9] A. Bourhim and M. Mabrouk, Numerical radius and product of elements in C * -algebras, Linear Multilinear Algebra 65 (2017), no. 6, 1108–1116. 10.1080/03081087.2016.1228818Suche in Google Scholar

[10] C. Conde, F. Kittaneh, H. R. Moradi and M. Sababheh, Numerical radii of operator matrices in terms of certain complex combinations of operators, Georgian Math. J. 31 (2024), no. 4, 575–586. 10.1515/gmj-2023-2112Suche in Google Scholar

[11] C. Conde, M. Sababheh and H. R. Moradi, Some weighted numerical radius inequalities, Indian J. Pure Appl. Math. (2025), 10.1007/s13226-025-00767-9. 10.1007/s13226-025-00767-9Suche in Google Scholar

[12] S. S. Dragomir, On the Boas–Bellman inequality in inner product spaces, Bull. Aust. Math. Soc. 69 (2004), no. 2, 217–225. 10.1017/S0004972700035954Suche in Google Scholar

[13] S. S. Dragomir and B. Mond, On the Boas-Bellman generalization of Bessel’s inequality in inner product spaces, Ital. J. Pure Appl. Math. (1998), no. 3, 29–35. Suche in Google Scholar

[14] J. I. Fujii, M. Fujii, M. S. Moslehian and Y. Seo, Cauchy-Schwarz inequality in semi-inner product C * -modules via polar decomposition, J. Math. Anal. Appl. 394 (2012), no. 2, 835–840. 10.1016/j.jmaa.2012.04.083Suche in Google Scholar

[15] J. I. Fujii, M. Fujii and Y. Seo, Operator inequalities on Hilbert C * -modules via the Cauchy–Schwarz inequality, Math. Inequal. Appl. 17 (2014), no. 1, 295–315. 10.7153/mia-17-24Suche in Google Scholar

[16] J. I. Fujii, M. Fujii and Y. Seo, Buzano inequality in inner product C * -modules via the operator geometric mean, Filomat 29 (2015), no. 8, 1689–1694. 10.2298/FIL1508689FSuche in Google Scholar

[17] A. G. Ghazanfari and S. S. Dragomir, Schwarz and Grüss type inequalities for C * -seminorms and positive linear functionals on Banach -modules, Linear Algebra Appl. 434 (2011), no. 4, 944–956. 10.1016/j.laa.2010.10.010Suche in Google Scholar

[18] I. H. Gümüş, H. R. Moradi and M. Sababheh, Operator inequalities via accretive transforms, Hacet. J. Math. Stat. 53 (2024), no. 1, 40–52. 10.15672/hujms.1160533Suche in Google Scholar

[19] M. Khosravi, R. Drnovšek and M. S. Moslehian, A commutator approach to Buzano’s inequality, Filomat 26 (2012), no. 4, 827–832. 10.2298/FIL1204827KSuche in Google Scholar

[20] F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math. 158 (2003), no. 1, 11–17. 10.4064/sm158-1-2Suche in Google Scholar

[21] F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math. 168 (2005), no. 1, 73–80. 10.4064/sm168-1-5Suche in Google Scholar

[22] R. K. Nayak, Weighted numerical radius inequalities for operator and operator matrices, Acta Sci. Math. (Szeged) 90 (2024), no. 1–2, 193–206. 10.1007/s44146-023-00103-9Suche in Google Scholar

[23] W. L. Paschke, Inner product modules over B -algebras, Trans. Amer. Math. Soc. 182 (1973), 443–468. 10.1090/S0002-9947-1973-0355613-0Suche in Google Scholar

[24] J. Pec̆arić, T. Furuta, J. Mićić Hot and Y. Seo, Mond–Pečarić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Monogr. Inequal. 1, ELEMENT, Zagreb, 2005. Suche in Google Scholar

[25] W. Rudin, Principles of Mathematical Analysis, 3rd ed., Int. Ser. Pure Appl. Math., McGraw-Hill, New York, 1976. Suche in Google Scholar

[26] M. Sababheh, I. H. Gümüş and H. R. Moradi, Further properties of PPT and ( α , β ) -normal matrices, Oper. Matrices 18 (2024), no. 1, 257–271. 10.7153/oam-2024-18-16Suche in Google Scholar

[27] A. Sheikhhosseini, M. Khosravi and M. Sababheh, The weighted numerical radius, Ann. Funct. Anal. 13 (2022), no. 1, Paper No. 3. 10.1007/s43034-021-00148-3Suche in Google Scholar

[28] T. Yamazaki, On upper and lower bounds for the numerical radius and an equality condition, Studia Math. 178 (2007), no. 1, 83–89. 10.4064/sm178-1-5Suche in Google Scholar

[29] A. Zamani, The weighted Hilbert–Schmidt numerical radius, Linear Algebra Appl. 675 (2023), 225–243. 10.1016/j.laa.2023.06.024Suche in Google Scholar

Received: 2025-02-13
Revised: 2025-04-21
Accepted: 2025-04-30
Published Online: 2025-06-25

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 6.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2025-2052/html
Button zum nach oben scrollen