Startseite q-Fibonacci statistical convergence
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

q-Fibonacci statistical convergence

  • Koray İbrahim Atabey ORCID logo EMAIL logo , Muhammed Çınar ORCID logo und Mikail Et ORCID logo
Veröffentlicht/Copyright: 29. März 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we use the q-Fibonacci band matrix F ^ q = ( F ^ n k ( q ) ) to introduce the notions of q-Fibonacci summability, q-Fibonacci statistical convergence, strongly F ^ q [ p ] -Cesàro summability and give some inclusion relations about these concepts.

Acknowledgements

This paper is a part of Koray İbrahim Atabey’s Ph.D. thesis submitted to Fırat University.

References

[1] K. E. Akbaş and M. Işık, On asymptotically λ-statistical equivalent sequences of order α in probability, Filomat 34 (2020), no. 13, 4359–4365. 10.2298/FIL2013359ASuche in Google Scholar

[2] H. Aktuğlu and Ş. Bekar, q-Cesáro matrix and q-statistical convergence, J. Comput. Appl. Math. 235 (2011), no. 16, 4717–4723. 10.1016/j.cam.2010.08.018Suche in Google Scholar

[3] G. E. Andrews, Fibonacci numbers and the Rogers–Ramanujan identities, Fibonacci Quart. 42 (2004), no. 1, 3–19. 10.1080/00150517.2004.12428437Suche in Google Scholar

[4] K. I. Atabey, M. Çınar and M. Et, q-Fibonacci sequence spaces and related matrix transformations, J. Appl. Math. Comput. 69 (2023), no. 2, 2135–2154. 10.1007/s12190-022-01825-9Suche in Google Scholar

[5] P. Aytaç, Some arithmetic properties of q-Fibonacci numbers, Master thesis, Akdeniz University, 2018. Suche in Google Scholar

[6] F. Başar and H. Dutta, Summable Spaces and Their Duals, Matrix Transformations and Geometric Properties, Monogr. Res. Notes Math., CRC Press, Boca Raton, 2020. 10.1201/9781351166928Suche in Google Scholar

[7] Ş. Bekar, q-Matrix summability methods, Ph.D. Thesis, Eastern Mediterranean University, 2011. Suche in Google Scholar

[8] B. C. Berndt, Ramanujan’s Notebooks. Part II, Springer, New York, 1989. 10.1007/978-1-4612-4530-8Suche in Google Scholar

[9] J. Boos, Classical and Modern Methods in Summability, Oxford Math. Monogr., Oxford University, Oxford, 2000. 10.1093/oso/9780198501657.001.0001Suche in Google Scholar

[10] N. L. Braha, H. M. Srivastava and M. Et, Some weighted statistical convergence and associated Korovkin and Voronovskaya type theorems, J. Appl. Math. Comput. 65 (2021), no. 1–2, 429–450. 10.1007/s12190-020-01398-5Suche in Google Scholar

[11] L. Carlitz, Fibonacci notes. III. q-Fibonacci numbers, Fibonacci Quart. 12 (1974), 317–322. 10.1080/00150517.1974.12430696Suche in Google Scholar

[12] J. Cigler, Elementare q-identitäten, Publ. Instit. Rech. Math. (1982), 23–57. Suche in Google Scholar

[13] M. Çinar and M. Et, q-double Cesaro matrices and q-statistical convergence of double sequences, Nat. Acad. Sci. Lett. 43 (2020), no. 1, 73–76. 10.1007/s40009-019-00808-ySuche in Google Scholar

[14] J. S. Connor, The statistical and strong p-Cesàro convergence of sequences, Analysis 8 (1988), no. 1–2, 47–63. 10.1524/anly.1988.8.12.47Suche in Google Scholar

[15] S. Demiriz and A. Şahin, q-Cesàro sequence spaces derived by q-analogue, Adv. Math. 5 (2016), no. 2, 97–110. Suche in Google Scholar

[16] M. Et, P. Baliarsingh, H. Şengül Kandemir and M. Küçükaslan, On μ-deferred statistical convergence and strongly deferred summable functions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 115 (2021), no. 1, Paper No. 34. 10.1007/s13398-020-00983-4Suche in Google Scholar

[17] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244. 10.4064/cm-2-3-4-241-244Suche in Google Scholar

[18] J. A. Fridy, On statistical convergence, Analysis 5 (1985), no. 4, 301–313. 10.1524/anly.1985.5.4.301Suche in Google Scholar

[19] M. Güngör and M. Et, Δ r -strongly almost summable sequences defined by Orlicz functions, Indian J. Pure Appl. Math. 34 (2003), no. 8, 1141–1151. Suche in Google Scholar

[20] M. Güngör, M. Et and Y. Altin, Strongly ( V σ , λ , q ) -summable sequences defined by Orlicz functions, Appl. Math. Comput. 157 (2004), no. 2, 561–571. 10.1016/j.amc.2003.08.051Suche in Google Scholar

[21] M. D. Hirschhorn, Partitions and Ramanujan’s continued fraction, Duke Math. J. 39 (1972), 789–791. 10.1215/S0012-7094-72-03986-5Suche in Google Scholar

[22] M. İlkhan Kara and E. E. Kara, Matrix transformations and compact operators on Catalan sequence spaces, J. Math. Anal. Appl. 498 (2021), no. 1, Article ID 124925. 10.1016/j.jmaa.2021.124925Suche in Google Scholar

[23] M. Işık and K. E. Akbaş, On λ- statistical convergence of order α in probability, J. Inequal. Spec. Funct. 8 (2017), no. 4, 57–64. Suche in Google Scholar

[24] M. Işık and K. E. Et, On lacunary statistical convergence of order α in probability, AIP Conf. Proc. 1676 (2015), Article ID 020045. 10.1063/1.4930471Suche in Google Scholar

[25] V. Kac and P. Cheung, Quantum Calculus, Universitext, Springer, New York, 2002. 10.1007/978-1-4613-0071-7Suche in Google Scholar

[26] E. E. Kara, Some topological and geometrical properties of new Banach sequence spaces, J. Inequal. Appl. 2013 (2013), Paper No. 38. 10.1186/1029-242X-2013-38Suche in Google Scholar

[27] T. Koshy, Fibonacci and Lucas Numbers with Applications, Pure Appl. Math. (New York), Wiley-Interscience, New York, 2001. 10.1002/9781118033067Suche in Google Scholar

[28] M. Mursaleen, F. Başar and B. Altay, On the Euler sequence spaces which include the spaces l p and l . II, Nonlinear Anal. 65 (2006), no. 3, 707–717. 10.1016/j.na.2005.09.038Suche in Google Scholar

[29] M. Mursaleen, S. Tabassum and R. Fatma, On q-statistical summability method and its properties, Iran. J. Sci. Technol. Trans. A Sci. 46 (2022), no. 2, 455–460. 10.1007/s40995-022-01285-7Suche in Google Scholar

[30] H. Pan, Arithmetic properties of q-Fibonacci numbers and q-Pell numbers, Discrete Math. 306 (2006), no. 17, 2118–2127. 10.1016/j.disc.2006.03.067Suche in Google Scholar

[31] T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), no. 2, 139–150. Suche in Google Scholar

[32] E. Savaş and M. Et, On ( Δ λ m , I ) -statistical convergence of order α, Period. Math. Hungar. 71 (2015), no. 2, 135–145. 10.1007/s10998-015-0087-ySuche in Google Scholar

[33] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959), 361–375. 10.1080/00029890.1959.11989303Suche in Google Scholar

[34] I. Schur, Ein Beitrag zur additiven Zahlentheorie und zur Theorie der Kettenbrüche, Berl. Ber. 1917 (1917), 302–321. Suche in Google Scholar

[35] T. Selmanogullari, E. Savaş and B. E. Rhoades, On q-Hausdorff matrices, Taiwanese J. Math. 15 (2011), no. 6, 2429–2437. 10.11650/twjm/1500406479Suche in Google Scholar

[36] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951), no. 1, 73–74. Suche in Google Scholar

[37] K. K. Tabib, The topology of statistical convergence, Ph.D. Thesis, The University of Texas at El Paso, 2012. Suche in Google Scholar

[38] T. Yaying, B. Hazarika and M. Mursaleen, On sequence space derived by the domain of q-Cesàro matrix in p space and the associated operator ideal, J. Math. Anal. Appl. 493 (2021), no. 1, Article ID 124453. 10.1016/j.jmaa.2020.124453Suche in Google Scholar

[39] T. Yaying, M. İ. Kara, B. Hazarika and E. E. Kara, A study on q-analogue of Catalan sequence spaces, Filomat 37 (2023), no. 3, 839–850. 10.2298/FIL2303839YSuche in Google Scholar

[40] A. Zygmund, Trigonometric Series, Cambridge University, London, 1959. Suche in Google Scholar

Received: 2024-09-20
Revised: 2024-12-28
Accepted: 2025-01-08
Published Online: 2025-03-29

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 6.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2025-2022/pdf
Button zum nach oben scrollen