Startseite Concerning the Nakayama property of a module
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Concerning the Nakayama property of a module

  • Somayeh Karimzadeh EMAIL logo , Esmaeil Rostami und Somayeh Hadjirezaei
Veröffentlicht/Copyright: 13. Dezember 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we thoroughly study the Nakayama property and some related concepts. Also, we describe multiplication modules that, among other things, satisfy the Nakayama property. Next, we show that a ring đť‘… is a Max ring if and only if all modules that can be generated by a finite or countable set have the weak Nakayama property. We prove that a ring đť‘… is a perfect ring if and only if every module that can be generated by a finite or countable set has the Nakayama property. Finally, we present some categorical results on the aforementioned properties.

MSC 2010: 13C13; 13C99

Acknowledgements

The authors appreciate the referee’s attentive reading of this work and insightful remarks, which helped to improve the quality of this manuscript.

References

[1] M. Ahmadi and J. Moghaderi, 𝑛-submodules, Iran. J. Math. Sci. Inform. 17 (2022), no. 1, 177–190. 10.52547/ijmsi.17.1.177Suche in Google Scholar

[2] Y. Al-Shaniafi and P. F. Smith, Comultiplication modules over commutative rings, J. Commut. Algebra 3 (2011), no. 1, 1–29. 10.1216/JCA-2011-3-1-1Suche in Google Scholar

[3] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, 2nd ed., Grad. Texts in Math. 13, Springer, New York, 1992. 10.1007/978-1-4612-4418-9Suche in Google Scholar

[4] H. Ansari-Toroghy and F. Farshadifar, On comultiplication modules, Korean Ann. Math. 25 (2008), no. 1–2, 57–66. Suche in Google Scholar

[5] H. Ansari-Toroghy and F. Farshadifar, Survey on comultiplication modules, Surv. Math. Appl. 14 (2019), 61–108. Suche in Google Scholar

[6] A. Azizi, On generalization of Nakayama’s lemma, Glasg. Math. J. 52 (2010), no. 3, 605–617. 10.1017/S0017089510000467Suche in Google Scholar

[7] A. Barnard, Multiplication modules, J. Algebra 71 (1981), no. 1, 174–178. 10.1016/0021-8693(81)90112-5Suche in Google Scholar

[8] Z. A. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra 16 (1988), no. 4, 755–779. 10.1080/00927878808823601Suche in Google Scholar

[9] C. Faith, Locally perfect commutative rings are those whose modules have maximal submodules, Comm. Algebra 23 (1995), no. 13, 4885–4886. 10.1080/00927879508825506Suche in Google Scholar

[10] C. Gottlieb, The Nakayama property of a module and related concepts, Comm. Algebra 43 (2015), no. 12, 5131–5140. 10.1080/00927872.2014.958849Suche in Google Scholar

[11] R. M. Hamsher, Commutative rings over which every module has a maximal submodule, Proc. Amer. Math. Soc. 18 (1967), 1133–1137. 10.1090/S0002-9939-1967-0217059-8Suche in Google Scholar

[12] J. A. Huckaba, Commutative Rings with Zero Divisors, Monogr. Textb. Pure Appl. Math. 117, Marcel Dekker, New York, 1988. Suche in Google Scholar

[13] H. Matsumura, Commutative Ring Theory, Cambridge Stud. Adv. Math. 8, Cambridge University, Cambridge, 1989. Suche in Google Scholar

[14] A. Nikseresht and H. Sharif, On comultiplication and 𝑟-multiplication modules, J. Algebr. Syst. 2 (2014), no. 1, 1–19. Suche in Google Scholar

[15] M. Samiei and H. F. Moghimi, Modules satisfying the weak Nakayama property, Indag. Math. (N. S.) 25 (2014), no. 3, 553–562. 10.1016/j.indag.2014.01.005Suche in Google Scholar

[16] U. Tekir, S. Koc and K. H. Oral, 𝑛-ideals of commutative rings, Filomat 31 (2017), no. 10, 2933–2941. 10.2298/FIL1710933TSuche in Google Scholar

Received: 2023-05-14
Revised: 2023-07-18
Accepted: 2023-08-06
Published Online: 2023-12-13
Published in Print: 2024-08-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 9.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2023-2102/html
Button zum nach oben scrollen