Startseite On the non-triviality of anisotropic Roumieu Gelfand–Shilov spaces and inclusion between them
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the non-triviality of anisotropic Roumieu Gelfand–Shilov spaces and inclusion between them

  • M’Hamed Bensaid EMAIL logo und Rachid Chaïli
Veröffentlicht/Copyright: 3. November 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The purpose of this work is to prove the non-triviality of anisotropic Roumieu Gelfand–Shilov spaces S { N } { M } ( n ) , and to establish the inclusion between them.

MSC 2020: 46E15; 46F05

Funding statement: The authors were supported by the Laboratory of Mathematical Analysis and Applications, Université d’Oran 1.

References

[1] P. Bolley and J. Camus, Powers and Gevrey’s regularity for a system of differential operators, Czechoslovak Math. J. 29(104) (1979), no. 4, 649–661. 10.21136/CMJ.1979.101644Suche in Google Scholar

[2] C. Bouzar and R. Chaili, Gevrey vectors of multi-quasi-elliptic systems, Proc. Amer. Math. Soc. 131 (2003), no. 5, 1565–1572. 10.1090/S0002-9939-02-06799-0Suche in Google Scholar

[3] D. Calvo, G. De Donno and L. Rodino, Operators with polynomial coefficients and generalized Gelfand–Shilov classes, Pliska Stud. Math. Bulgar. 21 (2012), 7–24. Suche in Google Scholar

[4] D. Calvo and L. Rodino, Iterates for operators and Gelfand–Shilov classes, Integral Transforms Spec. Funct. 22 (2011), no. 4–5, 269–276. 10.1080/10652469.2010.541037Suche in Google Scholar

[5] M. Cappiello and L. Rodino, SG-pseudodifferential operators and Gelfand–Shilov spaces, Rocky Mountain J. Math. 36 (2006), no. 4, 1117–1148. 10.1216/rmjm/1181069407Suche in Google Scholar

[6] M. Cappiello and J. Toft, Pseudo-differential operators in a Gelfand–Shilov setting, Math. Nachr. 290 (2017), no. 5–6, 738–755. 10.1002/mana.201500465Suche in Google Scholar

[7] R. Chaïli, Systems of differential operators in anisotropic Roumieu classes, Rend. Circ. Mat. Palermo (2) 62 (2013), no. 2, 189–198. 10.1007/s12215-012-0101-7Suche in Google Scholar

[8] G. M. Constantine and T. H. Savits, A multivariate Faà di Bruno formula with applications, Trans. Amer. Math. Soc. 348 (1996), no. 2, 503–520. 10.1090/S0002-9947-96-01501-2Suche in Google Scholar

[9] I. M. Gelfand and G. E. Shilov, Generalized Functions. Vol. 2, Academic Press, New York, 1968. Suche in Google Scholar

[10] H. Komatsu, Ultradistributions. I. Structure theorems and a characterization, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 20 (1973), 25–105. Suche in Google Scholar

[11] F. Nicola and L. Rodino, Global Pseudo-Differential Calculus on Euclidean Spaces, Pseudo Diff. Oper. 4, Birkhäuser, Basel, 2010. 10.1007/978-3-7643-8512-5Suche in Google Scholar

[12] L. Zanghirati, Iterates of quasielliptic operators, and Gevrey classes, Boll. Un. Mat. Ital. B (5) 18 (1981), no. 2, 411–428. Suche in Google Scholar

Received: 2023-04-13
Accepted: 2023-05-31
Published Online: 2023-11-03
Published in Print: 2024-04-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 7.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2023-2087/pdf
Button zum nach oben scrollen