Startseite The quasi-Zariski topology on the graded quasi-primary spectrum of a graded module over a graded commutative ring
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The quasi-Zariski topology on the graded quasi-primary spectrum of a graded module over a graded commutative ring

  • Malik Jaradat und Khaldoun Al-Zoubi ORCID logo EMAIL logo
Veröffentlicht/Copyright: 4. Oktober 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Let G be a group. Let R be a G-graded commutative ring and let M be a graded R-module. A proper graded submodule Q of M is called a graded quasi-primary submodule if whenever r h ( R ) and m h ( M ) with r m Q , then either r Gr ( ( Q : R M ) ) or m Gr M ( Q ) . The graded quasi-primary spectrum qp . Spec g ( M ) is defined to be the set of all graded quasi-primary submodules of M. In this paper, we introduce and study a topology on qp . Spec g ( M ) , called the quasi-Zariski topology, and investigate the properties of this topology and some conditions under which ( qp . Spec g ( M ) , q . τ g ) is a Noetherian, spectral space.

MSC 2020: 13A02; 16W50

References

[1] K. Al-Zoubi and M. Al-Dolat, On graded primary-like submodules of graded modules over graded commutative rings, Proyecciones 40 (2021), no. 4, 859–871. 10.22199/issn.0717-6279-3467Suche in Google Scholar

[2] K. Al-Zoubi and R. Alkhalaf, On graded quasi-primary submodules of graded modules over graded commutative rings, Bol. Soc. Parana. Mat. (3) 39 (2021), no. 4, 57–64. 10.5269/bspm.41917Suche in Google Scholar

[3] K. Al-Zoubi and M. Jaradat, The Zariski topology on the graded classical prime spectrum of a graded module over a graded commutative ring, Mat. Vesnik 70 (2018), no. 4, 303–313. Suche in Google Scholar

[4] K. Al-Zoubi and F. Qarqaz, An intersection condition for graded prime submodules in Gr-multiplication modules, Math. Rep. (Bucur.) 20(70) (2018), no. 3, 329–336. Suche in Google Scholar

[5] N. Bourbaki, Commutative Algebra. Chapters 1–7, Elem. Math. (Berlin), Springer, Berlin, 1998. Suche in Google Scholar

[6] A. Y. Darani, Topology on Spec g ( M ) , Bul. Acad. Ştiinţe Repub. Mold. Mat. 67 (2011), no. 3, 45–53. Suche in Google Scholar

[7] J. Escoriza and B. Torrecillas, Multiplication objects in commutative Grothendieck categories, Comm. Algebra 26 (1998), no. 6, 1867–1883. 10.1080/00927879808826244Suche in Google Scholar

[8] R. Hazrat, Graded Rings and Graded Grothendieck Groups, London Math. Soc. Lecture Note Ser. 435, Cambridge University, Cambridge, 2016. 10.1017/CBO9781316717134Suche in Google Scholar

[9] M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 142 (1969), 43–60. 10.1090/S0002-9947-1969-0251026-XSuche in Google Scholar

[10] M. Jaradat, The graded classical prime spectrum with the Zariski topology as a Notherian topological space, Iran. J. Math. Sci. Inform. 17 (2022), no. 2, 213–233. 10.52547/ijmsi.17.2.213Suche in Google Scholar

[11] C.-P. Lu, The Zariski topology on the prime spectrum of a module, Houston J. Math. 25 (1999), no. 3, 417–432. Suche in Google Scholar

[12] J. M. Møller, General topology, Notes, Matematisk Institut, Copenhagen, 2007. Suche in Google Scholar

[13] J. R. Munkres, Topology: A First Course, Prentice-Hall, Englewood Cliffs, 1975. Suche in Google Scholar

[14] C. Năstăsescu and F. van Oystaeyen, Graded and Filtered Rings and Modules, Lecture Notes in Math. 758, Springer, Berlin, 1979. 10.1007/BFb0067331Suche in Google Scholar

[15] C. Năstăsescu and F. van Oystaeyen, Graded Ring Theory, North-Holland Math. Libr. 28, North-Holland, Amsterdam, 1982. Suche in Google Scholar

[16] C. Năstăsescu and F. van Oystaeyen, Methods of Graded Rings, Lecture Notes in Math. 1836, Springer, Berlin, 2004. 10.1007/b94904Suche in Google Scholar

[17] K. H. Oral, Ü. Tekir and A. G. Ağargün, On graded prime and primary submodules, Turkish J. Math. 35 (2011), no. 2, 159–167. 10.3906/mat-0904-11Suche in Google Scholar

[18] N. A. Ozkiırisci, K. H. Oral and U. Tekir, Graded prime spectrum of a graded module, Iran. J. Sci. Technol. Trans. A Sci. 37 (2013), no. 3, 411–420. Suche in Google Scholar

[19] M. Refai, On properties of G -spec ( R ) , Sci. Math. Jpn. 53 (2001), no. 3, 411–415. Suche in Google Scholar

[20] M. Refai, M. Hailat and S. Obiedat, Graded radicals and graded prime spectra, Far East J. Math. Sci. (FJMS) 2000 (2000), 59–73. Suche in Google Scholar

[21] M. Samiei and H. F. Moghimi, Quasi-Zariski topology on the quasi-primary spectrum of a module, Jordan J. Math. Stat. 10 (2017), no. 4, 319–345. Suche in Google Scholar

Received: 2023-02-15
Revised: 2023-05-17
Accepted: 2023-05-22
Published Online: 2023-10-04
Published in Print: 2024-04-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 6.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2023-2075/pdf
Button zum nach oben scrollen