Startseite Convergence and integrability of rational and double rational trigonometric series with coefficients of bounded variation of higher order
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Convergence and integrability of rational and double rational trigonometric series with coefficients of bounded variation of higher order

  • Hardeepbhai J. Khachar ORCID logo EMAIL logo und Rajendra G. Vyas ORCID logo
Veröffentlicht/Copyright: 27. Juni 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We prove that a rational trigonometric series with its coefficients c ( n ) = o ( 1 ) satisfying the condition n | Δ m c ( n ) | < , m , converges pointwise to some f ( x ) for every x ( 0 , 2 π ) and also converges in L p [ 0 , 2 π ) -metric to f for 0 < p < 1 m . This result is further extended to a double rational trigonometric series.

MSC 2020: 42C05

Award Identifier / Grant number: 09/0114(11228)/2021-EMR-I

Funding statement: The work of the first author is supported by the Council of Scientific & Industrial Research (CSIR), India, through JRF (File no. 09/0114(11228)/2021-EMR-I).

References

[1] C.-P. Chen and C.-T. Wu, Double Walsh series with coefficients of bounded variation of higher order, Trans. Amer. Math. Soc. 350 (1998), no. 1, 395–417. 10.1090/S0002-9947-98-01899-6Suche in Google Scholar

[2] G. H. Hardy, On the convergence of certain multiple series, Proc. Camb. Phil. Soc. 19 (1916–1919), 86–95. Suche in Google Scholar

[3] K. Kaur, S. S. Bhatia and B. Ram, Double trigonometric series with coefficients of bounded variation of higher order, Tamkang J. Math. 35 (2004), no. 3, 267–280. 10.5556/j.tkjm.35.2004.208Suche in Google Scholar

[4] H. J. Khachar and R. G. Vyas, A note on multiple rational Fourier series, Period. Math. Hungar. 85 (2022), no. 2, 264–274. 10.1007/s10998-021-00433-7Suche in Google Scholar

[5] F. Móricz, Convergence and integrability of double trigonometric series with coefficients of bounded variation, Proc. Amer. Math. Soc. 102 (1988), no. 3, 633–640. 10.1090/S0002-9939-1988-0928995-2Suche in Google Scholar

[6] V. B. Stanojevic, On a theorem of P. L. Uljanov, Proc. Amer. Math. Soc. 90 (1984), no. 3, 370–372. 10.1090/S0002-9939-1984-0728350-0Suche in Google Scholar

[7] P. L. Ul’yanov, Application of A-integration to a class of trigonometric series, Mat. Sb. (N. S.) 35(77) (1954), 469–490. Suche in Google Scholar

Received: 2022-08-07
Revised: 2023-01-22
Accepted: 2023-02-14
Published Online: 2023-06-27
Published in Print: 2023-10-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 25.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2023-2041/pdf
Button zum nach oben scrollen