Startseite On the estimation of the Bernoulli regression function using Bernstein polynomials for group observations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the estimation of the Bernoulli regression function using Bernstein polynomials for group observations

  • Petre Babilua EMAIL logo
Veröffentlicht/Copyright: 6. Januar 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The estimate for the Bernoulli regression function is constructed using the Bernstein polynomial for group observations. The question of its consistency and asymptotic normality is studied. A testing hypothesis is constructed on the form of the Bernoulli regression function. The consistency of the constructed tests is investigated.

References

[1] M. Aerts and N. Veraverbeke, Bootstrapping a nonparametric polytomous regression model, Math. Methods Statist. 4 (1995), no. 2, 189–200. Suche in Google Scholar

[2] J. B. Copas, Plotting p against x, J. R. Stat. Soc. Ser. C Appl. Stat. 32 (1983), no. 1, 25–31. 10.2307/2348040Suche in Google Scholar

[3] H. Cramér, Mathematical Methods of Statistics, Princeton Math. Ser. 9, Princeton University, Princeton, 1946. Suche in Google Scholar

[4] S. Efromovich, Nonparametric Curve Estimation. Methods, Theory, and Applications, Springer Ser. Statist., Springer, New York, 1999. Suche in Google Scholar

[5] W. Feller, An Introduction to Probability Theory and Its Applications. Vol. II, John Wiley & Sons, New York, 1966. Suche in Google Scholar

[6] A. Leblanc, On estimating distribution functions using Bernstein polynomials, Ann. Inst. Statist. Math. 64 (2012), no. 5, 919–943. 10.1007/s10463-011-0339-4Suche in Google Scholar

[7] G. G. Lorentz, Bernstein Polynomials, 2nd ed., Chelsea, New York, 1986. Suche in Google Scholar

[8] E. Nadaraya, P. Babilua and G. Sokhadze, About the nonparametric estimation of the Bernoulli regression, Comm. Statist. Theory Methods 42 (2013), no. 22, 3989–4002. 10.1080/03610926.2011.626550Suche in Google Scholar

[9] H. Okumura and K. Naito, Weighted kernel estimators in nonparametric binomial regression, J. Nonparametr. Stat. 16 (2004), no. 1–2, 39–62. 10.1080/10485250310001624828Suche in Google Scholar

[10] A. N. Širjaev, Probability (in Russian), “Nauka”, Moscow, 1980. Suche in Google Scholar

Received: 2021-04-04
Accepted: 2021-05-25
Published Online: 2022-01-06
Published in Print: 2022-06-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 16.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2021-2132/html
Button zum nach oben scrollen