Startseite Asymptotic normality of sums of Hilbert space valued random elements
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Asymptotic normality of sums of Hilbert space valued random elements

  • Alfredas Račkauskas EMAIL logo
Veröffentlicht/Copyright: 4. Dezember 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We investigate the asymptotic normality of distributions of the sequence kun,kXk, n, where (Xk,k) either is a sequence of i.i.d. random elements or constitutes a linear process with i.i.d. innovations in a separable Hilbert space. The weights (un,k) are in general a family of linear bounded operators. This model includes operator weighted sums of Hilbert space valued linear processes, operator-wise discounted sums in a Hilbert space as well some extensions of classical summation methods.

MSC 2010: 60B12; 60F05

Funding source: Lietuvos Mokslo Taryba

Award Identifier / Grant number: S-MIP-17-76

Funding statement: The research was supported by the Research Council of Lithuania, grant no. S-MIP-17-76.

References

[1] N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space, Dover, New York, 1993. Suche in Google Scholar

[2] D. Bosq, Linear Processes in Function Spaces. Theory and Applications, Lecture Notes in Statist. 149, Springer, New York, 2000. 10.1007/978-1-4612-1154-9Suche in Google Scholar

[3] N. Dunford and J. T. Schwartz, Linear Operators. Part I. General Theory, Wiley Class. Libr., John Wiley & Sons, New York, 1988. Suche in Google Scholar

[4] P. Embrechts and M. Maejima, The central limit theorem for summability methods of i.i.d. random variables, Z. Wahrsch. Verw. Gebiete 68 (1984), no. 2, 191–204. 10.1007/BF00531777Suche in Google Scholar

[5] H. U. Gerber, The discounted central limit theorem and its Berry–Esséen analogue, Ann. Math. Statist. 42 (1971), 389–392. 10.1214/aoms/1177693529Suche in Google Scholar

[6] E. Giné and J. R. León, On the central limit theorem in Hilbert space, Stochastica 4 (1980), no. 1, 43–71. Suche in Google Scholar

[7] T. Mikosh and R. Norvaĭsha, Limit theorems for methods of summation of independent random variables. I (in Russian), Litovsk. Mat. Sb. 27 (1987), no. 1, 142–155. 10.1007/BF00972025Suche in Google Scholar

[8] M. Peligrad and S. Utev, Invariance principle for stochastic processes with short memory, High Dimensional Probability, IMS Lecture Notes Monogr. Ser. 51, Institute of Mathematical Statistics, Beachwood (2006), 18–32. 10.1214/074921706000000734Suche in Google Scholar

[9] A. Pietsch, Operator Ideals, Math. Monogr. 16, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978. Suche in Google Scholar

[10] A. Račkauskas and C. Suquet, On limit theorems for Banach-space-valued linear processes, Lith. Math. J. 50 (2010), no. 1, 71–87. 10.1007/s10986-010-9072-6Suche in Google Scholar

[11] A. Račkauskas and C. Suquet, Operator fractional Brownian motion as limit of polygonal lines processes in Hilbert space, Stoch. Dyn. 11 (2011), no. 1, 49–70. 10.1142/S0219493711003152Suche in Google Scholar

[12] J. O. Ramsay and B. W. Silverman, Functional Data Analysis, 2nd ed., Springer Ser. Statist., Springer, New York, 2005. 10.1007/b98888Suche in Google Scholar

[13] T. Shervashidze and V. Tarieladze, CLT for operator Abel sums of random elements, Georgian Math. J. 15 (2008), no. 4, 785–792. 10.1515/GMJ.2008.785Suche in Google Scholar

[14] N. N. Vakhania, V. I. Tarieladze And S. A. Chobanyan, Probability Distributions on Banach Spaces, Math. Appl. (Soviet Series) 14, D. Reidel, Dordrecht, 1987. 10.1007/978-94-009-3873-1Suche in Google Scholar

Received: 2018-01-08
Revised: 2019-03-21
Accepted: 2019-04-01
Published Online: 2019-12-04
Published in Print: 2021-06-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2019-2075/html
Button zum nach oben scrollen