Startseite Numerical solution of the Eikonal equation for an automatic piping
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Numerical solution of the Eikonal equation for an automatic piping

  • Kerstin Rjasanowa EMAIL logo
Veröffentlicht/Copyright: 17. Oktober 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The procedure of positioning of pipes, for example for the automobile exhaust construction, by the use of 3D CAD systems is difficult and time consuming because of obstacles in an engine compartment. There are also further strong technical requirements and restrictions. An automatic generation procedure based on the level set method and the numerical solution of the Eikonal equation is proposed. The positions of pipes which satisfy the technical requirements are obtained using spline functions.

MSC 2010: 65D10; 65D17; 68U07

References

[1] S. Bak, J. McLaughlin and D. Renzi, Some improvements for the fast sweeping method, SIAM J. Sci. Comput. 32 (2010), no. 5, 2853–2874. 10.1137/090749645Suche in Google Scholar

[2] Z. Clawson, A. Chacon and A. Vladimirsky, Causal domain restriction for Eikonal equations, SIAM J. Sci. Comput. 36 (2014), no. 5, A2478–A2505. 10.1137/130936531Suche in Google Scholar

[3] M. Detrixhe, F. Gibou and C. Min, A parallel fast sweeping method for the Eikonal equation, J. Comput. Phys. 237 (2013), 46–55. 10.1016/j.jcp.2012.11.042Suche in Google Scholar

[4] Z. Fu, W.-K. Jeong, Y. Pan, R. M. Kirby and R. T. Whitaker, A fast iterative method for solving the eikonal equation on triangulated surfaces, SIAM J. Sci. Comput. 33 (2011), no. 5, 2468–2488. 10.1137/100788951Suche in Google Scholar PubMed PubMed Central

[5] P. A. Gremaud and C. M. Kuster, Computational study of fast methods for the eikonal equation, SIAM J. Sci. Comput. 27 (2006), no. 6, 1803–1816. 10.1137/040605655Suche in Google Scholar

[6] J. Hoschek and D. Lasser, Grundlagen der geometrischen Datenverarbeitung, 2nd ed., B. G. Teubner, Stuttgart, 1992. 10.1007/978-3-322-89829-6Suche in Google Scholar

[7] S.-R. Hysing and A. Turek, The Eikonal equation: Numerical efficiency vs. algorithmic complexity on quadrilateral grids, Proceedings of Algoritmy, Slovak University of Bratislava, Bratislava (2005), 22–31. Suche in Google Scholar

[8] E. Konukoglu, M. Sermesant, O. Clatz, J. M. Peyrat, H. Delingette and N. Ayache, A recursive anisotropic fast marching approach to reaction diffusion equation: Application to tumor growth modeling, Information Processing in Medical Imaging—IPMI 2007, Lecture Notes in Comput. Sci. 4584, Springer, Berlin (2007), 687–399. 10.1007/978-3-540-73273-0_57Suche in Google Scholar PubMed

[9] S. Luo, J. Qian and R. Burridge, High-order factorization based high-order hybrid fast sweeping methods for point-source eikonal equations, SIAM J. Numer. Anal. 52 (2014), no. 1, 23–44. 10.1137/120901696Suche in Google Scholar

[10] A. J. Pullan, K. A. Tomlinson and P. J. Hunter, A finite element method for an eikonal equation model of myocardial excitation wavefront propagation, SIAM J. Appl. Math. 63 (2006), no. 1, 324–350. 10.1137/S0036139901389513Suche in Google Scholar

[11] J. A. Sethian, Level Set Methods and Fast Marching Methods. Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, 2nd ed., Cambridge Monogr. Appl. Comput. Math. 3, Cambridge University, Cambridge, 1999. Suche in Google Scholar

[12] H. R. Schwarz and N. Köckler, Numerische Mathematik, 8. Auflage, Vieweg & Teubner, Wiesbaden, 2011. 10.1007/978-3-8348-8166-3Suche in Google Scholar

[13] C. Tsiotsios and M. Petrou, On the choice of the parameters for anisotropic diffusion in image processing, Pattern Recognit. 46 (2013), no. 5, 1369–1381. 10.1016/j.patcog.2012.11.012Suche in Google Scholar

[14] V. Vavryčuk, On numerically solving the complex eikonal equation using real ray-tracing methods: A comparison with the exact analytical solution, Geophys. 77 (2012), no. 4, T109–T116. 10.1190/geo2011-0431.1Suche in Google Scholar

[15] J. Weickert, Anisotropic Diffusion in Image Processing, B. G. Teubner, Stuttgart, 1998. Suche in Google Scholar

[16] J. S. Zavyalov, B. I. Kvasov and V. L. Miroshnichenko, Methods of Spline-functions (in Russian), Nauka, Moscow, 1980. Suche in Google Scholar

Received: 2017-03-22
Accepted: 2018-02-19
Published Online: 2019-10-17
Published in Print: 2021-04-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2019-2052/html
Button zum nach oben scrollen