Startseite On the solutions of a higher order difference equation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the solutions of a higher order difference equation

  • Raafat Abo-Zeid EMAIL logo
Veröffentlicht/Copyright: 20. Februar 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we determine the forbidden set, introduce an explicit formula for the solutions and discuss the global behavior of solutions of the difference equation

xn+1=axnxn-kbxn-cxn-k-1,n=0,1,,

where a,b,c are positive real numbers and the initial conditions x-k-1,x-k,,x-1,x0 are real numbers. We show that when a=b=c, the behavior of the solutions depends on whether k is even or odd.

MSC 2010: 39A10; 39A20

References

[1] R. Abo-Zeid, Global asymptotic stability of a second order rational difference equation, J. Appl. Math. Inform. 28 (2010), no. 3–4, 797–804. Suche in Google Scholar

[2] R. Abo-Zeid, Global behavior of a rational difference equation with quadratic term, Math. Morav. 18 (2014), no. 1, 81–88. 10.5937/MatMor1401081ASuche in Google Scholar

[3] R. Abo-Zeid, Global behavior of a third order rational difference equation, Math. Bohem. 139 (2014), no. 1, 25–37. 10.21136/MB.2014.143635Suche in Google Scholar

[4] R. Abo-Zeid and M. A. Al-Shabi, Global behavior of a third order difference equation, Tamkang J. Math. 43 (2012), no. 3, 375–383. 10.5556/j.tkjm.43.2012.801Suche in Google Scholar

[5] R. Abo-Zeid and C. Cinar, Global behavior of the difference equation xn+1=Axn-1B-Cxnxn-2, Bol. Soc. Parana. Mat. (3) 31 (2013), no. 1, 43–49. 10.5269/bspm.v31i1.14432Suche in Google Scholar

[6] M. A. Al-Shabi and R. Abo-Zeid, Global asymptotic stability of a higher order difference equation, Appl. Math. Sci. (Ruse) 4 (2010), no. 17–20, 839–847. Suche in Google Scholar

[7] K. S. Berenhaut, J. D. Foley and S. Stević, The global attractivity of the rational difference equation yn=yn-k+yn-m1+yn-kyn-m, Appl. Math. Lett. 20 (2007), no. 1, 54–58. 10.1016/j.aml.2006.02.022Suche in Google Scholar

[8] E. Camouzis, G. Ladas, I. W. Rodrigues and S. Northshield, The rational recursive sequence xn+1=(βxn2)/(1+xn-12), Comput. Math. Appl. 28 (1994), no. 1–3, 37–43. 10.1016/0898-1221(94)00091-3Suche in Google Scholar

[9] M. Dehghan, C. M. Kent, R. Mazrooei-Sebdani, N. L. Ortiz and H. Sedaghat, Dynamics of rational difference equations containing quadratic terms, J. Difference Equ. Appl. 14 (2008), no. 2, 191–208. 10.1080/10236190701565636Suche in Google Scholar

[10] E. A. Grove, E. J. Janowski, C. M. Kent and G. Ladas, On the rational recursive sequence xn+1=αxn+β(γxn+δ)xn-1, Comm. Appl. Nonlinear Anal. 1 (1994), no. 3, 61–72. Suche in Google Scholar

[11] H. Sedaghat, Global behaviours of rational difference equations of orders two and three with quadratic terms, J. Difference Equ. Appl. 15 (2009), no. 3, 215–224. 10.1080/10236190802054126Suche in Google Scholar

[12] S. Stević, Global stability and asymptotics of some classes of rational difference equations, J. Math. Anal. Appl. 316 (2006), no. 1, 60–68. 10.1016/j.jmaa.2005.04.077Suche in Google Scholar

[13] X. Yang, On the global asymptotic stability of the difference equation xn=xn-1xn-2+xn-3+axn-1+xn-2xn-3+a, Appl. Math. Comput. 171 (2005), no. 2, 857–861. Suche in Google Scholar

[14] X. Yang, D. J. Evans and G. M. Megson, On two rational difference equations, Appl. Math. Comput. 176 (2006), no. 2, 422–430. 10.1016/j.amc.2005.09.031Suche in Google Scholar

[15] X. Yang, W. Su, B. Chen, G. M. Megson and D. J. Evans, On the recursive sequence xn=axn-1+bxn-2c+dxn-1xn-2, Appl. Math. Comput. 162 (2005), no. 3, 1485–1497. 10.1016/j.amc.2004.03.023Suche in Google Scholar

Received: 2015-08-31
Accepted: 2016-05-25
Published Online: 2018-02-20
Published in Print: 2020-06-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2018-0008/html
Button zum nach oben scrollen