Abstract
We study Besov and Triebel–Lizorkin spaces with Muckenhoupt weights which have their singularities at some distance from the set where the trace is taken. We exemplify our results for special weights of type
References
[1] H. Abels, M. Krbec and K. Schumacher, On the trace space of a Sobolev space with a radial weight, J. Funct. Spaces Appl. 6 (2008), no. 3, 259–276. 10.1155/2008/986720Suche in Google Scholar
[2] K. F. Andersen and R. T. John, Weighted inequalities for vector-valued maximal functions and singular integrals, Studia Math. 69 (1980/81), no. 1, 19–31. 10.4064/sm-69-1-19-31Suche in Google Scholar
[3] M. Bownik, Atomic and molecular decompositions of anisotropic Besov spaces, Math. Z. 250 (2005), no. 3, 539–571. 10.1007/s00209-005-0765-1Suche in Google Scholar
[4] M. Bownik and K. P. Ho, Atomic and molecular decompositions of anisotropic Triebel–Lizorkin spaces, Trans. Amer. Math. Soc. 358 (2006), no. 4, 1469–1510. 10.1090/S0002-9947-05-03660-3Suche in Google Scholar
[5] H.-Q. Bui, Weighted Besov and Triebel spaces: Interpolation by the real method, Hiroshima Math. J. 12 (1982), no. 3, 581–605. 10.32917/hmj/1206133649Suche in Google Scholar
[6] H.-Q. Bui, Characterizations of weighted Besov and Triebel-Lizorkin spaces via temperatures, J. Funct. Anal. 55 (1984), no. 1, 39–62. 10.1016/0022-1236(84)90017-XSuche in Google Scholar
[7] H.-Q. Bui, M. Paluszyński and M. H. Taibleson, A maximal function characterization of weighted Besov–Lipschitz and Triebel–Lizorkin spaces, Studia Math. 119 (1996), no. 3, 219–246. Suche in Google Scholar
[8]
H.-Q. Bui, M. Paluszyński and M. H. Taibleson,
Characterization of the Besov–Lipschitz and Triebel–Lizorkin spaces. The case
[9]
V. I. Burenkov and M. L. Gol’dman,
Extension of functions from
[10] K. J. Falconer, The Geometry of Fractal Sets, Cambridge Tracts in Math. 85, Cambridge University Press, Cambridge, 1986. Suche in Google Scholar
[11]
R. Farwig and H. Sohr,
Weighted
[12] M. Frazier and B. Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J. 34 (1985), no. 4, 777–799. 10.1515/9781400827268.385Suche in Google Scholar
[13] M. Frazier and B. Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 (1990), no. 1, 34–170. 10.1016/0022-1236(90)90137-ASuche in Google Scholar
[14]
M. Frazier and S. Roudenko,
Matrix-weighted Besov spaces and conditions of
[15] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud. 116, North-Holland, Amsterdam, 1985. Suche in Google Scholar
[16]
M. L. Gol’dman,
Extension of functions in
[17] D. D. Haroske, Dichotomy in Muckenhoupt weighted function space: A fractal example, Spectral Theory, Function Spaces and Inequalities, Oper. Theory Adv. Appl. 219, Birkhäuser, Basel (2012), 69–89. 10.1007/978-3-0348-0263-5_5Suche in Google Scholar
[18] D. D. Haroske and I. Piotrowska, Atomic decompositions of function spaces with Muckenhoupt weights, and some relation to fractal analysis, Math. Nachr. 281 (2008), no. 10, 1476–1494. 10.1002/mana.200510690Suche in Google Scholar
[19] D. D. Haroske and H.-J. Schmeisser, On trace spaces of function spaces with a radial weight: The atomic approach, Complex Var. Elliptic Equ. 55 (2010), no. 8–10, 875–896. 10.1080/17476930903276050Suche in Google Scholar
[20] D. D. Haroske and L. Skrzypczak, Entropy and approximation numbers of embeddings of function spaces with Muckenhoupt weights. I, Rev. Mat. Complut. 21 (2008), no. 1, 135–177. 10.5209/rev_REMA.2008.v21.n1.16447Suche in Google Scholar
[21] D. D. Haroske and L. Skrzypczak, Entropy and approximation numbers of embeddings of function spaces with Muckenhoupt weights. II: General weights, Ann. Acad. Sci. Fenn. Math. 36 (2011), no. 1, 111–138. 10.5186/aasfm.2011.3607Suche in Google Scholar
[22] D. D. Haroske and L. Skrzypczak, Entropy numbers of embeddings of function spaces with Muckenhoupt weights. III: Some limiting cases, J. Funct. Spaces Appl. 9 (2011), no. 2, 129–178. 10.1155/2011/928962Suche in Google Scholar
[23]
A. Jonsson and H. Wallin,
Function spaces on subsets of
[24] V. M. Kokilashvili, Maximum inequalities and multipliers in weighted Lizorkin–Triebel spaces (in Russian), Dokl. Akad. Nauk SSSR 239 (1978), no. 1, 42–45. Suche in Google Scholar
[25] B. Muckenhoupt, Hardy’s inequality with weights, Studia Math. 44 (1972), 31–38. 10.4064/sm-44-1-31-38Suche in Google Scholar
[26] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226. 10.1090/S0002-9947-1972-0293384-6Suche in Google Scholar
[27] B. Muckenhoupt, The equivalence of two conditions for weight functions, Studia Math. 49 (1973/74), 101–106. 10.4064/sm-49-2-101-106Suche in Google Scholar
[28] S. M. Nikol’skiĭ, Approximation of Functions of Several Variables and Embedding Theorems, Nauka, Moscow, 1969; 2nd ed., Nauka, Moscow, 1977. English translation: Grundlehren Math. Wiss. 205, Springer, Berlin, 1975. Suche in Google Scholar
[29] J. Peetre, The trace of Besov space – A limiting case, Technical report, University Lund, Lund, 1975. Suche in Google Scholar
[30] J. Peetre, A counterexample connected with Gagliardo’s trace theorem, Comment. Math. Special Issue 2 (1979), 277–282. Suche in Google Scholar
[31] I. Piotrowska, Traces on fractals of function spaces with Muckenhoupt weights, Funct. Approx. Comment. Math. 36 (2006), 95–117. 10.7169/facm/1229616444Suche in Google Scholar
[32] I. Piotrowska, Weighted function spaces and traces on fractals, PhD thesis, Friedrich-Schiller-Universität Jena, Jena, 2006. Suche in Google Scholar
[33] S. Roudenko, Matrix-weighted Besov spaces, Trans. Amer. Math. Soc. 355 (2003), no. 1, 273–314. 10.1090/S0002-9947-02-03096-9Suche in Google Scholar
[34] S. Roudenko, Duality of matrix-weighted Besov spaces, Studia Math. 160 (2004), no. 2, 129–156. 10.4064/sm160-2-3Suche in Google Scholar
[35]
V. S. Rychkov,
Littlewood–Paley theory and function spaces with
[36] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Math. Ser. 43, Princeton University Press, Princeton, 1993. 10.1515/9781400883929Suche in Google Scholar
[37] J.-O. Strömberg and A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Math. 1381, Springer, Berlin, 1989. 10.1007/BFb0091154Suche in Google Scholar
[38] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Pure Appl. Math. 123, Academic Press, Orlando, 1986. Suche in Google Scholar
[39] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland Math. Library 18, North-Holland, Amsterdam, 1978. Suche in Google Scholar
[40] H. Triebel, Theory of Function Spaces, Monogr. Math. 78, Birkhäuser, Basel, 1983; reprinted 2010. 10.1007/978-3-0346-0416-1Suche in Google Scholar
[41] H. Triebel, Theory of Function Spaces. II, Monogr. Math. 84, Birkhäuser, Basel, 1992; reprinted 2010. 10.1007/978-3-0346-0419-2Suche in Google Scholar
[42] H. Triebel, Fractals and Spectra. Related to Fourier Analysis and Function Spaces, Monogr. Math. 91, Birkhäuser, Basel, 1997; reprinted 2011. 10.1007/978-3-0348-0034-1_3Suche in Google Scholar
[43] H. Triebel, The Structure of Functions, Modern Birkhäuser Classics, Birkhäuser, Basel, 2001. Suche in Google Scholar
[44] H. Triebel, Theory of Function Spaces. III, Monogr. Math. 100, Birkhäuser, Basel, 2006. Suche in Google Scholar
[45] H. Triebel, Function Spaces and Wavelets on Domains, EMS Tracts Math. 7, European Mathematical Society (EMS), Zürich, 2008. 10.4171/019Suche in Google Scholar
[46] H. Triebel and H. Winkelvoß, A Fourier analytical characterization of the Hausdorff dimension of a closed set and of related Lebesgue spaces, Studia Math. 121 (1996), no. 2, 149–166. 10.4064/sm-121-2-149-166Suche in Google Scholar
[47] H. Triebel and H. Winkelvoß, Intrinsic atomic characterizations of function spaces on domains, Math. Z. 221 (1996), no. 4, 647–673. 10.1007/PL00004525Suche in Google Scholar
© 2017 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Impulsive differential inclusions via variational method
- Frame properties of a part of an exponential system with degenerate coefficients in Hardy classes
- A note on two-variable Chebyshev polynomials
- Spectral analysis of dissipative fractional Sturm–Liouville operators
- Common best proximity pairs in strictly convex Banach spaces
- Traces of Muckenhoupt weighted function spaces in case of distant singularities
- The commutativity of prime Γ-rings with generalized skew derivations
- Δμ-sets and ∇μ-sets in generalized topological spaces
- On strong well-posedness of initial-boundary value problems for higher order nonlinear hyperbolic equations with two independent variables
- Area properties associated with a convex plane curve
- Almost semi-correspondence
- The generalization of the Bernstein operator on any finite interval
- Some non-unique fixed point theorems of Ćirić type using rational-type contractive conditions
- On some properties of summability methods with variable order
- On the absolute convergence of Fourier series with respect to general orthonormal systems
Artikel in diesem Heft
- Frontmatter
- Impulsive differential inclusions via variational method
- Frame properties of a part of an exponential system with degenerate coefficients in Hardy classes
- A note on two-variable Chebyshev polynomials
- Spectral analysis of dissipative fractional Sturm–Liouville operators
- Common best proximity pairs in strictly convex Banach spaces
- Traces of Muckenhoupt weighted function spaces in case of distant singularities
- The commutativity of prime Γ-rings with generalized skew derivations
- Δμ-sets and ∇μ-sets in generalized topological spaces
- On strong well-posedness of initial-boundary value problems for higher order nonlinear hyperbolic equations with two independent variables
- Area properties associated with a convex plane curve
- Almost semi-correspondence
- The generalization of the Bernstein operator on any finite interval
- Some non-unique fixed point theorems of Ćirić type using rational-type contractive conditions
- On some properties of summability methods with variable order
- On the absolute convergence of Fourier series with respect to general orthonormal systems