Startseite Frame properties of a part of an exponential system with degenerate coefficients in Hardy classes
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Frame properties of a part of an exponential system with degenerate coefficients in Hardy classes

  • Bilal T. Bilalov und Sabina R. Sadigova EMAIL logo
Veröffentlicht/Copyright: 9. November 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A part of an exponential system with degenerate coefficients is considered. The frame properties (completeness, minimality, basicity, atomic decomposition) of this system in Hardy classes are studied in the case where the coefficients may not satisfy the Muckenhoupt condition.

Funding statement: This work was supported by the Research Program Competition launched by the National Academy of Sciences of Azerbaijan (Program: Frame Theory Applications of Wavelet Analysis to Signal Processing in Seismology and Other Fields).

Acknowledgements

The authors would like to express their deep gratitude to the reviewer for his/her valuable comments.

References

[1] K. I. Babenko, On conjugate functions (in Russian), Doklady Akad. Nauk SSSR (N. S.) 62 (1948), 157–160. Suche in Google Scholar

[2] N. Bary, Sur les bases dans l’espace de Hilbert, C. R. Doklady Acad. Sci. URSS (N. S.) 54 (1946), 379–382. Suche in Google Scholar

[3] B. T. Bilalov, The basis property of some systems of exponentials of cosines and sines (in Russian), Differ. Uravn. 26 (1990), no. 1, 10–16; translation in Differ. Equ. 26 (1990), no. 1, 8–13. Suche in Google Scholar

[4] B. T. Bilalov, Basis properties of some systems of exponentials, cosines, and sines (in Russian), Sibirsk. Mat. Zh. 45 (2004), no. 2, 264–273; translation in Sib. Math. J. 45 (2004), no. 2, 214–221. 10.1023/B:SIMJ.0000021278.64966.d7Suche in Google Scholar

[5] B. T. Bilalov and Z. A. Gasimov, On completeness of exponent system with complex coefficients in weight spaces, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. 25 (2005), no. 7, 9–14. Suche in Google Scholar

[6] B. Bilalov and F. Guliyeva, On the frame properties of degenerate system of sines, J. Funct. Spaces Appl. 2012 (2012), Article ID 184186. 10.1155/2012/184186Suche in Google Scholar

[7] B. T. Bilalov and S. G. Veliev, Bases of the eigenfunctions of two discontinuous differential operators (in Russian), Differ. Uravn. 42 (2006), no. 10, 1428–1430; translation in Differ. Equ. 42 (2006), no. 10, 1503–1506. 10.1134/S0012266106100156Suche in Google Scholar

[8] O. Christensen, An Introduction to Frames and Riesz Bases, Appl. Numer. Harmon. Anal., Birkhäuser, Boston, 2003. 10.1007/978-0-8176-8224-8Suche in Google Scholar

[9] R. Edwards, Fourier Series with a Modern Exposition. Vol. 1 (in Russian), Mir, Moscow, 1985. Suche in Google Scholar

[10] R. Edwards, Fourier Series with a Modern Exposition. Vol. 2 (in Russian), Mir, Moscow, 1985. Suche in Google Scholar

[11] V. F. Gaposhkin, A generalization of the theorem of M. Riesz on conjugate functions (in Russian), Mat. Sb. (N. S.) 46(88) (1958), 359–372. Suche in Google Scholar

[12] G. J. Garnett, Bounded Analytic Functions (in Russian), Mir, Moscow, 1984; translation, Academic Press, New York, 1981. Suche in Google Scholar

[13] C. Heil, A Basis Theory Primer. Expanded edition, Appl. Numer. Harmon. Anal., Birkhäuser, New York, 2011. 10.1007/978-0-8176-4687-5Suche in Google Scholar

[14] K. S. Kazaryan and P. I. Lizorkin, Multipliers, bases and unconditional bases of the weighted spaces B and SB (in Russian), Tr. Mat. Inst. Steklov. 187 (1989), 98–115; translation in Proc. Steklov Inst. Math. 1990, no. 3, 111–130. Suche in Google Scholar

[15] M. G. Krein, Functional Analysis (in Russian), Nauka, Moscow, 1964. Suche in Google Scholar

[16] P. Kusis, Introduction to Hp spaces (in Russian), Mir, Moscow, 1984. Suche in Google Scholar

[17] Z. V. Mamedova, On approximate properties of systems in Banach spaces, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. 30 (2010), no. 1, 133–138. Suche in Google Scholar

[18] Z. V. Mamedova, On basis properties of degenerate exponential system, Appl. Math. 3 (2012), no. 12, 1963–1966. 10.4236/am.2012.312269Suche in Google Scholar

[19] E. I. Moiseev, On the basis property of sine and cosine systems in a weighted space (in Russian), Differ. Uravn. 34 (1998), no. 1, 40–44, 141; translation in Differ. Equ. 34 (1998), no. 1, 39–43. Suche in Google Scholar

[20] E. I. Moiseev, The basis property of a system of eigenfunctions of a differential operator in a weighted space (in Russian), Differ. Uravn. 35 (1999), no. 2, 200–205, 286; translation in Differ. Equ. 35 (1999), no. 2, 199–204. Suche in Google Scholar

[21] E. I. Moiseev and N. Abbasi, On the basis property of the eigenfunctions of a generalized gas-dynamic problem of Frankl’ (in Russian), Dokl. Akad. Nauk 436 (2011), no. 4, 439–442; translation in Dokl. Math. 83 (2011), no. 1, 72–75. Suche in Google Scholar

[22] E. I. Moiseev and V. E. Ambartsumyan, On the solvability of a nonlocal boundary value problem with opposite fluxes on a part of the boundary and of the adjoint problem (in Russian), Differ. Uravn. 46 (2010), no. 6, 883–886; translation in Differ. Equ. 46 (2010), no. 6, 892–895. 10.1134/S0012266110060121Suche in Google Scholar

[23] S. S. Pukhov and A. M. Sedletskiĭ, Bases of exponentials, sines, and cosines in weighted spaces on a finite interval (in Russian), Dokl. Akad. Nauk 425 (2009), no. 4, 452–455; translation in Dokl. Math. 79 (2009), no. 2, 236–239. Suche in Google Scholar

[24] A. Rahimi, Frames and Their Generalizations in Hilbert and Banach Spaces, Lambert Academic Publishing, Saarbrücken, 2011. Suche in Google Scholar

[25] W. Rudin, Functional Analysis (in Russian), Mir, Moscow, 1975. Suche in Google Scholar

[26] I. Singer, Bases in Banach Spaces. I, Grundlehren Math. Wiss. 154, Springer, New York, 1970. 10.1007/978-3-642-51633-7Suche in Google Scholar

[27] A. Zygmund, Trigonometric Series. Vol. I (in Russian), Mir, Moscow, 1965. Suche in Google Scholar

[28] A. Zygmund, Trigonometric Series. Vol. II (in Russian), Mir, Moscow, 1965. Suche in Google Scholar

Received: 2012-7-24
Revised: 2014-10-31
Accepted: 2015-3-17
Published Online: 2016-11-9
Published in Print: 2017-9-1

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 7.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2016-0051/pdf
Button zum nach oben scrollen