Abstract
Cognitive load refers to the mental resources available in working memory, which can vary due to, e.g., the inherent complexity of a task. Studies have investigated the effect of a higher cognitive demand on speech, either on fluency, lexical use or linguistic display of emotions. Fewer have investigated all these parameters jointly, and most focus on English. Here we manipulate working memory load with an image-depiction task with or without access to the image and investigate whether cognitive load impacts speech production in French, i.e., correlates with both fluency metrics (number of word tokens and lemmas, lemma-token ratio, counts and rates of filled pauses, interruptions and repetitions) and/or with lexical metrics (use of words from a given lexical field or with a given connotation). Our results show that, compared to their peers in the low cognitive load condition (with access to the image), speakers under high cognitive load (who describe the image from memory) indeed tend to use more disfluencies but show little differences in the use of specific vocabulary or in emotional words. Although the absence of lexical differences may be due to inherent language- or task-specific differences, the confirmation that an increase in cognitive load implies an increase in disfluency indicates that at least this one parameter is a cross-linguistic indicator of speech production under high cognitive load.
Acknowledgements
The authors wish to thank the two anonymous reviewers who not only provided valuable insights, but also a more accurate, cleaner and more elegant version of the original Python script used in this study. This work was also partly supported by an F.R.S.-FNRS grant to the project PPaDisM: Phonetic Patterns in Discourse Markers (PI: Mathilde Hutin).
References
Baddeley, Alan. 2000. The episodic buffer: A new component of working memory? Trends in Cognitive Science, 4, 417–423. doi: https://doi.org/10.1016/s1364-6613(00)01538-2Search in Google Scholar
Baddeley, Alan. 2003. Working memory and language: An overview. Journal of Communication Disorders, 36, 189–208. doi: https://doi.org/10.1016/s0021-9924(03)00019-4Search in Google Scholar
Baddeley, Alan. 2012. Working memory: Theories, models, and controversies. Annual Review of Psychology, 63, 1–29. doi: https://doi.org/10.1146/annurev-psych-120710-100422Search in Google Scholar
Barnes, Sally, & Lewin, Cathy. 2005. An introduction to inferential statistics: Testing for differences and relationships. In Bridget Somekh & Cathy Lewin (Eds.), Research Methods in the Social Sciences (pp. 226–235). London: SAGE Publications Ltd.Search in Google Scholar
Berthold, Andre. 1998. Repräsentation und Verarbeitung sprachlicher Indikatoren für kognitive Ressourcenbeschränkungen [Representation and processing of linguistic indicators of cognitive resource limitations]. Master’s thesis, Department of Computer Science, Saarland University, Germany, 1998.Search in Google Scholar
Boersma, Paul, & Weenink, David 2019. Praat: Doing phonetics by computer [Computer program], Version 6.1. Retrieved July 13, 2019 from http://www.praat.org/Search in Google Scholar
Brennan, Susan Elise, & Williams, Maurice. 1995. The feeling of another’s knowing: Prosody and filled pauses as cues to listeners about the metacognitive states of speakers. Journal of Memory and Language, 34 (3), 383–398. doi: https://doi.org/10.1006/jmla.1995.1017Search in Google Scholar
Broisson, Zoë. 2019. How egocentric is language production? Evidence from discourse marker use under cognitive load. Master’s thesis. UCLouvain. Retrieved from https://hdl.handle.net/2078.2/14297Search in Google Scholar
Broisson, Zoë, & Degand, Liesbeth. 2022. 6 - How egocentric is discourse marker use? Investigating the impact of speaker orientation and cognitive load on discourse marker production. In Maria-Josep Cuenca & Liesbeth Degand (Eds.), Discourse markers in interaction: From production to comprehension (pp. 121–158). Berlin, Boston: De Gruyter Mouton. doi: https://doi.org/10.1515/9783110790351-006Search in Google Scholar
Bromme, Rainer, & Wehner, Theo. 1987. Zum Zusammenhang von Sprechgeschwindigkeit und Sprechfehlern mit der Aufgabenschwierigkeit beim lauten Denken. Zeitschrift für experimentelle und angewandte Psychologie, 34, 1–16.Search in Google Scholar
Chandler, Paul, & Sweller, John. 1991. Cognitive load theory and the format of instruction. Cognition and Instruction, 8, 293–332. doi: https://doi.org/10.1207/s1532690xci0804_2Search in Google Scholar
Christenfeld, Nicholas. 1994. Options and ums. Journal of Language and Social Psychology, 13 (2), 192–199. doi: https://doi.org/10.1177/0261927X94132005Search in Google Scholar
Danino, Charlotte, Knutsen, Dominique, & Col, Gilles. 2020. Naviguer dans le dialogue et faire voir ce que l’on dit: Approches linguistique et psycholinguistique de “voilà”. In Marta Saiz-Sánchez, Amalia Rodríguez Somolinos, Sonia Gómez-Jordana Ferary (Eds.), Marques d’oralité et représentation de l’oral en français, 20, Presses universitaires Savoie Mont Blanc, 10 2377410146. Retrieved from https://hal.science/hal-02949361v2Search in Google Scholar
Deese, James. 1980. Pauses, prosody, and the demands of production in language. In Hans W. Dechert & Manfred Raupach (Hrsg.), Temporal variables in speech: Studies in honour of Frieda Goldman-Eisler (pp. 69–84). The Hague: Mouton. doi: https://doi.org/10.1515/9783110816570.69Search in Google Scholar
Farmer, E., & Brownson, A. 2003. Review of workload measurement, analysis and interpretation methods (No. CARE-Integra-TRS-130-02-WP2). Brussels, Belgium: European Organisation for the Safety of Air Navigation.Search in Google Scholar
Foushee, H. Clayton, & Helmreich, Robert L. 1988. Group interaction and flight crew performance. In Earl Wiener & David Nagel (Eds.), Human factors in aviation (pp. 189–227). New York, NY: Academic Press. Retrieved from https://psycnet.apa.org/record/1988-98354-00610.1016/B978-0-08-057090-7.50013-8Search in Google Scholar
Fox Tree, Jean E. 2001. Listeners’ uses of um and uh in speech comprehension. Memory & Cognition, 29 (2), 320–326. doi: https://doi.org/10.3758/bf03194926Search in Google Scholar
Fox Tree, Jean E. 2007. Functional spontaneous speech phenomena. Perspectives on Fluency and Fluency Disorders, 17 (2), 17–19. doi: https://doi.org/10.1044/ffd17.2.17Search in Google Scholar
Hutin, Mathilde, Hu, Junfei, & Degand, Liesbeth. 2024. Uh, um and mh: Are filled pauses prone to conversational converge? Proceedings of Interspeech, 2024, 3575–3579. doi: https://doi.org/10.21437/Interspeech.2024-1168Search in Google Scholar
Janssen, Jeroen, Kirschner, Femke, Erkens, Gijsbert, Kirschner, Paul A., & Paas, Fred. 2010. Making the black box of collaborative learning transparent: Combining process-oriented and cognitive load approaches. Educational Psychology Review, 22, 139–154. doi: https://doi.org/10.1007/s10648-010-9131-xSearch in Google Scholar
Jou, Jerwen, & Harris, Richard J. 1992. The effect of divided attention on speech production. Bulletin of the Psychonomic Society, 30, 301–304. doi: https://doi.org/10.3758/BF03330471Search in Google Scholar
Katz, Lawrence C., Fraser, E. B., & Wagner, T. L. 1998. Rotary-wing crew communication patterns across workload levels. In RTO HFM symposium on “Current Aeromedical Issues in Rotary Wing Operations,” (pp. 14.1–14.3).Search in Google Scholar
Khawaja, M. Asif, Chen, Fang, & Marcus, Nadine. 2014. Measuring cognitive load using linguistic features: Implications for usability evaluation and adaptive interaction design. International Journal of Human-Computer Interaction, 30 (5), 343–368. doi: https://doi.org/10.1080/10447318.2013.860579Search in Google Scholar
Kirschner, Femke, Paas, Fred, & Kirschner, Paul A. 2009. Cognitive load approach to collaborative learning: United brains for complex tasks. Educational Psychology Review, 21, 31–42. doi: https://doi.org/10.1007/s10648-008-9095-2Search in Google Scholar
Kleinman, David L., & Serfaty, Daniel. 1989. Team performance assessment in distributed decision making. In R. Gibson, J. Peter Kincaid, & B. Goldiez (Eds.), Proceedings of the symposium on interactive networked simulation for training (pp. 22–27). Orlando, FL: University of Central Florida.Search in Google Scholar
Knutsen, Dominique, Col, Gilles, & Rouet, Jean-François. 2020. L’apport de la méthode expérimentale à l’étude de certains aspects de voilà. In Gilles Col, Charlotte Danino, & Stéphane Bikialo (Eds.), Polysémie, usages et fonctions de « voilà » (pp. 259–298). Berlin, Boston: De Gruyter. doi: https://doi.org/10.1515/9783110622454-008Search in Google Scholar
Lakens, Daniël. 2022. Sample size justification. Collabra: Psychology, 8 (1), 33267. doi: https://doi.org/10.1525/collabra.33267Search in Google Scholar
Laserna, Charlyn M., Seih, Yi-Tai, & Pennebaker, James W. 2014. Um… who like says you know: Filler word use as a function of age, gender, and personality. Journal of Language and Social Psychology, 33 (3), 328–338. doi: https://doi.org/10.1177/0261927X14526993Search in Google Scholar
Lennon, Colleen, & Burdick, Hal. 2004. The Lexile Freamework as an approach for reading measurement and success (White paper from The Lexile Framework for Reading). Retrieved from https://cdn.lexile.com/m/uploads/whitepapers/Lexile-Reading-Measurement-and-Success-0504_MetaMetricsWhitepaper.pdfSearch in Google Scholar
Marx, Edeltrud. 1984. Über die Wirkung von Zeitdruck auf Sprachproduktionsprozesse. Dissertation, Universität Münster.Search in Google Scholar
Müller, Christian, Großmann-Hutter, Barbara, Jameson, Anthony, Rummer, Ralf, & Wittig, Frank. 2001. Recognizing time pressure and cognitive load on the basis of speech: An experimental study. In Mathias Bauer, Piotr J. Gmytrasiewicz, Julita Vassileva (Eds.), Proceedings of the Eighth International Conference on User Modeling (UM2001) (pp. 24–33). Berlin, Germany: Springer. doi: https://doi.org/10.1007/3-540-44566-8_3Search in Google Scholar
Oser, Randall, Prince, Carolyn, Morgan, Ben, & Simpson, Steven. 1991. An analysis of aircrew communication patterns and content (No. 90-009). Orlando, FL: Naval Training Systems Centre, Human Factors Division. Retrieved from https://apps.dtic.mil/sti/pdfs/ADA246618.pdf10.21236/ADA246618Search in Google Scholar
Oviatt, Sharon. 1995. Predicting spoken disfluencies during human-computer interaction. Computer Speech and Language, 9, 19–35. doi: https://doi.org/10.1006/csla.1995.0002Search in Google Scholar
Paas, Fred, Tuovinen, Juhani E., Tabbers, Huib, & van Gerven, Pascal. 2003. Cognitive load measurement as a means to advance cognitive load theory. Educational Psychologist, 38, 63–71. doi: https://doi.org/10.1207/S15326985EP3801_8Search in Google Scholar
Paas, Fred, van Gog, Tamara, & Sweller, John. 2010. Cognitive load theory: New conceptualizations, specifications, and integrated research perspectives. Educational Psychology Review, 22, 115–121. doi: https://doi.org/10.1007/s10648-010-9133-8Search in Google Scholar
Piolat, Annie, Booth, Roger J., Chung, Cindy K., Davids, M., & Pennebaker, James W. 2011. La version française du dictionnaire pour le LIWC: Modalités de construction et exemples d’utilisation, Psychologie Française, 56 (3), 145–159. doi: https://doi.org/10.1016/j.psfr.2011.07.002.Search in Google Scholar
R Core Team. 2021. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/Search in Google Scholar
Roßnagel, Christian. 1995. Kognitive Belastung und Hörerorientierung beim monologischen Instruieren. Zeitschrift für experimentelle und angewandte Psychologie, 42, 94–110.Search in Google Scholar
Roßnagel, Christian. 2000. Cognitive load and perspective-taking: Applying the automatic-controlled distinction to verbal communication. European Journal of Social Psychology, 30 (3), 429–445. doi: https://doi.org/10.1002/(SICI)1099-0992(200005/06)30:3<429::AID-EJSP3>3.0.CO;2-V10.1002/(SICI)1099-0992(200005/06)30:3<429::AID-EJSP3>3.0.CO;2-VSearch in Google Scholar
Rummer, Ralf. 1996. Kognitive Beanspruchung beim Sprechen. Weinheim: Beltz.Search in Google Scholar
Schneider, Ulrike. 2014. Frequency, Chunks and Hesitations. A Usage-based Analysis of Chunking in English. Freiburg: Universität Freiburg. doi: https://doi.org/10.6094/978-3-928969-57-4Search in Google Scholar
Sexton, J. Bryan, & Helmreich, Robert L. 2000. Analyzing cockpit communication: The links between language, performance, error, and workload. Journal of the Human Performance in Extreme Environments, 5, 63–68. doi: https://doi.org/10.7771/2327-2937.1007Search in Google Scholar
Sweller, John. 1988. Cognitive load during problem solving: Effects on learning. Cognitive Science, 12, 257–285. doi: https://doi.org/10.1016/0364-0213(88)90023-7Search in Google Scholar
Sweller, John, Ayres, Paul, & Kalyuga, Slava. 2011. Cognitive load theory. New York, NY: Springer-Verlag. doi: https://doi.org/10.1007/978-1-4419-8126-4Search in Google Scholar
Tan, Deborah H, & Jiang, Yuhong V. 2020. Tell me what you saw: The usefulness of verbal descriptions for others. Quarterly Journal of Experimental Psychology, 73 (8), 1227–1241. doi: https://doi.org/10.1177/1747021820915356Search in Google Scholar
The jamovi project. 2023. jamovi (Version 2.3) [Computer Software]. Retrieved from https://www.jamovi.orgSearch in Google Scholar
Van Rossum, Guido, & Drake, Fred L. 2009. Python 3 reference manual. Scotts Valley, CA: CreateSpace. ISBN: 978-1-4414-1269-0Search in Google Scholar
©2025 Walter de Gruyter GmbH, Berlin/Boston