Abstract
The present study addresses the influence of language on the conceptualisation of locative events (e.g., the bottle on the table) in French, English, and Dutch which differ greatly in their habitual encoding of locative events. Dutch obligatorily expresses the disposition of the Figure (viz. the bottle) via a Cardinal Posture Verb (CPV) like liggen ‘lie’, staan ‘stand’, or zitten ‘sit’. In French, the preferred locative marker is the neutral copula être ‘be’ which leaves dispositional nuances habitually unexpressed. English straddles the middle: while the neutral copula be is usually preferred, the CPVs are sometimes found because of diachronic reasons. Our study assesses the potential repercussions of these cross-linguistic differences on the perception of locative events via a recognition task involving eye-tracking and is run in a non-verbal and a verbal condition. Our findings show that, irrespective of the condition, recognition performance is affected by the linguistic preferences, which confirms the permanent effect of language on thought even beyond verbal contexts. The analysis of eye-movements corroborates this finding: depending on their language, the participants attend to the stimuli differently. In the verbal condition, language is used as a strategic tool to enhance memorisation and the participants’ eye-movements still reflect cross-linguistic differences.
Acknowledgements
I would like to thank Maarten Lemmens as well as the editors Beate Hampe and Anja Binanzer for their constructive feedback and valuable comments on an earlier version of this paper. Responsibility for any errors or inaccuracies in this final version is mine.
Appendix
Modeling Semantic Density for Dutch
Call: mlogit(formula = SemanticDensity ∼ 1 | Series + Position, data = data Dutch, method = “nr”) |
|||||
Frequencies of alternatives: | N | NVE | V | VE | |
0.05 | 0.0008 | 0.89 | 0.04 | ||
Coefficients | Estimate | Std. Error | z-value | Pr(>|z|) | Significance |
(Intercept):NVE (Intercept):V (Intercept):VE Series2:NVE Series2:V Series2:VE Series3:NVE Series3:V Series3:VE PositionCP:NVE PositionCP:V PositionCP:VE PositionNCP:NVE PositionNCP:V PositionNCP:VE GroundNCG:NVE GroundNCG:V GroundNCG:VE |
−2.950942 2.530437 −0.538598 0.11765 0.386097 0.034507 −16.380548 0.604699 −0.037211 −17.296914 −0.189811 −1.307101 1.052074 −0.053333 1.933351 −17.61952 −0.088687 −0.517935 |
1.279654 0.202299 0.338325 1.438461 0.21644 0.348896 4609.154388 0.22464 0.34288 4554.992258 0.20374 0.456682 1.446823 0.273288 0.358978 4111.664829 0.191135 0.292641 |
−2.306 12.5084 −1.592 0.0818 1.7839 0.0989 −0.0036 2.6919 −0.1085 −0.0038 −0.9316 −2.8622 0.7272 −0.1952 5.3857 −0.0043 −0.464 −1.7699 |
0.021108 <2.2e-16 0.111395 0.934814 0.074448 0.921214 0.997164 0.007105 0.913579 0.99697 0.351526 0.004208 0.467127 0.845272 7.22E-08 0.996581 0.642648 0.07675 |
* *** . ** ** *** . |
Log-Likelihood: −831.81 McFadden R2: 0.08 Likelihood ratio test: X2 = 149.88 p < 2.22e−16 |
Modeling Semantic Density for English
Call: mlogit(formula = SemanticDensity ∼ 1 | Series + Position, data = data English, method = “nr”) |
|||||
Frequencies of alternatives: | N 0.80 |
NVE 0.11 |
V 0.07 |
VE 0.009 |
|
Coefficients | Estimate | Std. Error | z-value | Pr(>|z|) | Significance |
(Intercept):NVE (Intercept):V (Intercept):VE |
−1.990391 −2.270818 −5.216412 |
0.166143 0.191165 0.655402 |
−11.98 −11.8788 −7.9591 |
<2.2e–16 <2.2e–16 1.78E–15 |
*** *** *** |
Series2:NVE Series2:V Series2:VE Series3:NVE Series3:V Series3:VE |
−0.155533 0.044147 −0.312267 −0.667779 −0.26463 0.06386 |
0.167239 0.199334 0.62999 0.173751 0.203795 0.483768 |
−0.93 0.2215 −0.4957 −3.8433 −1.2985 0.132 |
0.3523705 0.8247239 0.6201277 0.0001214 0.1941117 0.8949801 |
*** |
PositionCP:NVE PositionCP:V PositionCP:VE PositionNCP:NVE PositionNCP:V PositionNCP:VE |
−0.356056 −0.702786 0.014215 1.766024 0.868021 2.607661 |
0.182764 0.207132 0.723366 0.165949 0.20441 0.581868 |
−1.9482 −3.3929 0.0197 10.6419 4.2465 4.4815 |
0.0513936 0.0006915 0.9843216 < 2.2e–16 2.17E–05 7.41E–06 |
. *** *** *** *** |
GroundNCG:NVE GroundNCG:V GroundNCG:VE |
−0.176373 −0.051507 −0.150917 |
0.143599 0.167869 0.453068 |
−1.2282 −0.3068 −0.3331 |
0.2193618 0.7589735 0.7390584 |
|
Log-Likelihood: −1400.4 McFadden R2: 0.07 Likelihood ratio test: X2 = 241.64 p < 2.22e–16 |
Modeling Semantic Density for French
Call: mlogit(formula = SemanticDensity ∼ 1 | Series + Position, data = data French, method = “nr”) |
|||||
Frequencies of alternatives: | N 0.91 |
NVE 0.037 |
V 0.05 |
||
Coefficients | Estimate | Std. Error | z-value | Pr(>|z|) | Significance |
(Intercept):NVE (Intercept):V |
−3.07348 −3.27688 |
−0.27951 −0.2822 |
10.9958 11.6118 |
<2.2e–16 <2.2e–16 |
*** *** |
Series2:NVE Series2:V Series3:NVE Series3:V |
0.32205 0.12588 −0.31356 −0.21532 |
0.27786 0.27184 0.2981 0.2498 |
1.159 0.4631 −1.0519 −0.862 |
0.2464485 0.6433088 0.2928659 0.3886851 |
|
PositionCP:NVE PositionCP:V PositionNCP:NVE PositionNCP:V |
−1.27928 −1.39448 1.29257 2.24976 |
0.36395 0.42775 0.25654 0.23908 |
−3.515 −3.26 5.0386 9.4103 |
0.0004397 0.0011141 4.69E–07 < 2.2e–16 |
*** ** *** *** |
GroundNCG:NVE GroundNCG:V |
−0.31732 −0.26259 |
0.23748 0.21761 |
−1.3362 −1.2067 |
0.1814789 0.2275488 |
|
Log-Likelihood: −665.88 McFadden R2: 0.14 Likelihood ratio test: X2 = 231.89 p < 2.22e–16 |
Modeling Figure versus Ground orientedness in the non-verbal task
Linear mixed model fit by maximum likelihood [‘lmerMod’] |
||||
Formula: Dwell.Time.ms. ∼ Language * AOI.Name + Position + Ground + Series. + (1 | Participant) + (1 | Stimulus) | ||||
AIC 207966.9 |
BIC 208071.1 |
logLik −103969.4 |
deviance 207938.9 |
df.resid 12586 |
Estimate | Std. Dev. | T-value | ||
(Intercept) LanguageEnglish LanguageFrench AOI.NameGround PositionCP PositionNCP GroundNCG Series.Series2 Series.Series3 LanguageEnglish:AOI.Ground LanguageFrench:AOI.Ground |
2540.286 −260.52 3.618 −1592.118 −4.826 22.858 6.041 −45.138 −57.238 200.357 −79.294 |
41.503 53.658 53.194 28.107 18.542 23.794 17.066 20.4 20.093 40.097 39.749 |
61.207 −4.855 0.068 −56.645 −0.26 0.961 0.354 −2.213 −2.849 4.997 −1.995 |
Modeling orientational scanpaths on vertical Figures in the non-verbal task
Linear mixed model fit by maximum likelihood [‘lmerMod’] |
|||||
Formula: Extremities ∼ Language + Position + Ground + Series + (1 | Participant) + (1 | Stimulus) | |||||
AIC 4099.1 |
BIC 4160 |
logLik −2039.6 |
deviance 4079.1 |
df.resid 3247 |
|
Estimate | Std. Dev. | T-value | p-values | Significance | |
(Intercept) LanguageEnglish LanguageFrench PositionCanonical PositionNonCanonical GroundNonCanonical Series2 Series3 |
−0.3447 0.181 0.1234 −0.6159 −0.751 0.5326 0.7459 0.6944 |
0.4419 0.1321 0.1326 0.414 0.6291 0.349 0.4334 0.4346 |
−0.78 1.37 0.931 −1.487 −1.194 1.526 1.721 1.598 |
0.4353 0.1707 0.3519 0.1369 0.2326 0.127 0.0852 0.1101 |
Modeling orientational scanpaths on horizontal Figures in the non-verbal task
Linear mixed model fit by maximum likelihood [‘lmerMod’] |
|||||
Formula: Extremities ∼ Language + Position + Ground + Series + (1 | Participant) + (1 | Stimulus) | |||||
AIC 2789.6 |
BIC 2847.2 |
logLik −1384.8 |
deviance 2769.6 |
df.resid 2336 |
|
Estimate | Std. Dev. | T-value | p-values | Significance | |
(Intercept) LanguageEnglish LanguageFrench PositionCanonical PositionNonCanonical GroundNonCanonical Series2 Series3 |
0.65745 −0.42702 −0.46622 −0.86413 −0.18237 −1.20217 0.28855 −0.07791 |
0.61001 0.16267 0.16376 0.50962 0.52299 0.44328 0.51522 0.57518 |
1.078 −2.625 −2.847 −1.696 −0.349 −2.712 0.56 −0.135 |
0.28114 0.00866 0.00441 0.08995 0.72732 0.00669 0.57544 0.89226 |
** ** . ** |
Modeling Figure versus Ground orientedness in the verbal task
Linear mixed model fit by maximum likelihood [‘lmerMod’] |
||||
Formula: Dwell.Time.ms. ∼ Language * AOI.Name + Position + Ground + Series. + (1 | Participant) + (1 | Stimulus) | ||||
AIC 217585.2 |
BIC 217689.4 |
logLik 108778.6 |
deviance 217557.2 |
df.resid 12544 |
Estimate | Std. Dev. | T-value | ||
(Intercept) LanguageEnglish LanguageFrench AOI.NameGround PositionCanonical PositionNonCanonical GroundNonCanonical SeriesSeries2 SeriesSeries3 LanguageEnglish:AOI.NameGround LanguageFrench:AOI.NameGround |
2867.3 −216.1 −494.46 −650.69 −10.73 −121.06 88.72 14.4 115.75 212.95 347.82 |
74.86 86.36 85.43 41.91 47.21 59.69 43.61 52.29 49.85 60.48 59.52 |
38.304 −2.502 −5.788 −15.526 −0.227 −2.028 2.035 0.275 2.322 3.521 5.844 |
Modeling orientational scanpaths on vertical Figures in the verbal task
Linear mixed model fit by maximum likelihood [‘lmerMod’] |
|||||
Formula: Extremities ∼ Language + Position + Ground + Series + (1 | Participant) + (1 | Stimulus) | |||||
AIC 3448.2 |
BIC 3509.2 |
logLik −1714.1 |
deviance 3428.2 |
df.resid 3275 |
|
Estimate | Std. Dev. | T-value | p-values | ||
(Intercept) LanguageEnglish LanguageFrench PositionCanonical PositionNonCanonical GroundNonCanonical Series2 Series3 |
1.0764 0.1016 0.1367 −0.5902 −0.3315 0.5753 0.623 0.1368 |
0.5518 0.1496 0.1485 0.5201 0.784 0.4368 0.5419 0.5409 |
1.951 0.679 0.921 −1.135 −0.423 1.317 1.15 0.253 |
0.0511 0.497 0.3573 0.2565 0.6724 0.1878 0.2503 0.8004 |
Modeling orientational scanpaths on horizontal Figures in the verbal task
Linear mixed model fit by maximum likelihood [‘lmerMod’] |
|||||
Formula: Extremities ∼ Language + Position + Ground + Series + (1 | Participant) + (1 | Stimulus) | |||||
AIC 2827.1 |
BIC 2884.9 |
logLik −1403.5 |
deviance 2807.1 |
df.resid 2390 |
|
Estimate | Std. Dev. | T-value | p-values | Significance | |
(Intercept) LanguageEnglish LanguageFrench PositionCanonical PositionNonCanonical GroundNonCanonical Series2 Series3 |
0.62 −0.1217 −0.58368 −1.43134 −0.05375 −0.5142 0.79417 0.2253 |
0.89 0.17335 0.17216 0.74509 0.7372 0.67301 0.74857 0.82078 |
0.69 −0.702 −3.39 −1.921 −0.073 −0.764 1.061 0.274 |
0.48 0.482637 0.000698 0.05473 0.941874 0.444856 0.288726 0.783702 |
*** |
Modeling orientational scanpaths on vertical Figures across conditions
Linear mixed model fit by maximum likelihood [‘lmerMod’] |
|||||
Formula: Extremities ∼ Language + Position + Ground + Series + (1 | Participant) + (1 | Stimulus) | |||||
AIC 7575.4 |
BIC 7670.4 |
logLik −3773.7 |
deviance 7547.4 |
df.resid 6528 |
|
Estimate | Std. Dev. | T-value | p-values | Significance | |
(Intercept) LanguageEnglish LanguageFrench ConditionNV PositionCanonical PositionNonCanonical PositionNonCanonical GroundNonCanonical Series2 Series3 LanguageEnglish:ConditionNV LanguageFrench:ConditionNV |
0.93719 0.07131 0.13037 −1.16907 −0.58655 −0.84147 −0.21029 0.5384 0.66812 0.40781 0.10573 −0.0162 |
0.37558 0.12661 0.12595 0.27631 0.32733 0.63916 0.64184 0.27527 0.34168 0.34166 0.1408 0.1395 |
2.495 0.563 1.035 −4.231 −1.792 −1.317 −0.328 1.956 1.955 1.194 0.751 −0.116 |
0.0126 0.5733 0.3006 2.33E–05 0.0731 0.188 0.7432 0.0505 0.0505 0.2326 0.4527 0.9075 |
* *** . . . |
Modeling orientational scanpaths on horizontal Figures across conditions
Linear mixed model fit by maximum likelihood [‘lmerMod’] |
|||||
Formula: Extremities ∼ Language + Position + Ground + Series + (1 | Participant) + (1 | Stimulus) | |||||
AIC 5614.8 |
BIC 5705.3 |
logLik −2793.4 |
deviance 5586.8 |
df.resid 4732 |
|
Estimate | Std. Dev. | T-value | p-values | Significance | |
(Intercept) LanguageEnglish LanguageFrench ConditionNV PositionCanonical PositionNonCanonical PositionNonCanonical GroundNonCanonical Series2 Series3 LanguageEnglish:ConditionNV LanguageFrench:ConditionNV |
0.77875 −0.11634 −0.56898 −0.24462 −1.15366 −0.34651 0.10558 −0.85659 0.50167 0.06327 −0.32252 0.09294 |
0.57025 0.15357 0.15337 0.44454 0.44509 0.57609 0.57929 0.39312 0.44929 0.49773 0.16362 0.16232 |
1.366 −0.758 −3.71 −0.55 −2.592 −0.601 0.182 −2.179 1.117 0.127 −1.971 0.573 |
0.172053 0.448677 0.000207 0.582129 0.009542 0.547522 0.855378 0.029334 0.264176 0.898855 0.048709 0.56693 |
*** ** * * |
References
Ameka, Felix K. & Stephen C. Levinson. 2007. Introduction – The typology and semantics of locative predicates: Posturals, positionals and other beasts. Linguistics 45. 847–872.10.1515/LING.2007.025Search in Google Scholar
Bates, Douglas, Martin Mächler, Ben Bolker & Steve Walker. 2015. Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software 67(1). 1–48. doi:10.18637/jss.v067.i01.10.18637/jss.v067.i01Search in Google Scholar
Billman, Dorrit & Meredyth Krych. 1998. Path and manner verbs in action: Effects of “Skipping” or “Exiting” on event memory. In Morton Ann Gernsbacher & Sharon J. Derry (eds.), Proceedings of the 20th Annual Conference of the Cognitive Science Society, 156–161. Mahwah, NJ, & London: Lawrence Erlbaum Associates.10.4324/9781315782416-37Search in Google Scholar
Billman, Dorrit, Angela Swilley & Meredyth Krych. 2000. Path and manner priming: Verb production and event recognition. In Lila R. Gleitman and Aravind K. Joshi (eds.), Proceedings of the 22nd Annual Conference of the Cognitive Science Society, 615–620. Mahwah, NJ, & London: Lawrence Erlbaum Associates.Search in Google Scholar
Bloom, Paul, Mary A. Peterson, Lynn Nadel & Merrill F. Garrett. 1999. Language and space. (Language, Speech and Communication). Cambridge, MA: MIT Press.10.7551/mitpress/4107.001.0001Search in Google Scholar
Bosse, Solveig & Anna Papafragou. 2010. Spatial position in language and visual memory: A cross-linguistic comparison. In Stellan Ohlsson & Richard Catrambone (eds.), Proceedings of the 32th Annual Meeting of the Cognitive Science Society, 1052–1057. Austin, TX: Cognitive Science Society.Search in Google Scholar
Bosse, Solveig & Anna Papafragou. 2018. Does language affect memory for object position? A cross-linguistic comparison. Spatial Cognition and Computation 18(4). 285–314.10.1080/13875868.2018.1440396Search in Google Scholar
Cardini, Filippo E. 2010. Evidence against Whorfian effects in motion conceptualisation. Journal of Pragmatics 42. 1442–1459.10.1016/j.pragma.2009.09.017Search in Google Scholar
Coventry, Kenny R. & Simon C. Garrod. 2004. Saying, seeing, and acting: The psychological semantics of spatial prepositions. Hove & New York: Psychology Press.10.4324/9780203641521Search in Google Scholar
Croissant, Yves. 2020. Estimation of Random Utility Models in R: The mlogit Package. Journal of Statistical Software 95. 1–41.10.18637/jss.v095.i11Search in Google Scholar
Dunn, Michael, Anna Margetts, Sergio Meira & Angela Terrill. 2007. Four languages from the lower end of the typology of locative predication. Linguistics 45. 873–892.10.1515/LING.2007.026Search in Google Scholar
Feist, Michele I. & Paula Cifuentes Férez. 2013. Remembering how: Language, memory, and the salience of manner. Journal of Cognitive Science 14. 379–398.10.17791/jcs.2013.14.4.379Search in Google Scholar
Finkbeiner, Matthew, Janet Nicol, Delia Greth & Kumiko Nakamura. 2002. The role of language in memory for actions. Journal of Psycholinguist Research 31. 447–457.10.1023/A:1021204802485Search in Google Scholar
Flecken, Monique, Johannes Gerwien, Mary Carroll & Christiane von Stutterheim. 2014. Analyzing gaze allocation during language planning: A cross-linguistic study on dynamic events. Language and Cognition 7(1). 138–166.10.1017/langcog.2014.20Search in Google Scholar
Flecken, Monique, Panos Athanasopoulos, Jan R. Kuipers & Guillaume Thierry. 2015. On the road to somewhere: Brain potentials reflect language effects on motion event perception. Cognition 141. 41–51.10.1016/j.cognition.2015.04.006Search in Google Scholar
Flecken, Monique & Geertje Van Bergen. 2019. Can the English stand the bottle like the Dutch? Effects of relational categories on object perception. Cognitive Neuropsychology 37. 271–287.10.1080/02643294.2019.1607272Search in Google Scholar
Gennari, Silvia P., Steven A. Sloman, Barbare C. Malt & W. Tecumseh Fitch. 2002. Motion events in language and cognition. Cognition 83(1). 49–79.10.1016/S0010-0277(01)00166-4Search in Google Scholar
Gullberg, Marianne. 2011. Language-specific encoding of placement events in gestures. In Jürgen Bohnemeyer & Eric Pederson (eds.), Event representation in language and cognition, 166–188. Cambridge: Cambridge University Press.10.1017/CBO9780511782039.008Search in Google Scholar
Henderson, John M., James R. Brockmole, Monica Catelhano & Michael Mack. 2007. Visual saliency does not account for eye-movements during visual search in real-world scenes. In Roger P. G. Van Gompel, Martin H. Fisher, Wayne S. Murray & Robin L. Hill. (eds.), Eye-movements: A window on mind and brain, 538–562. Amsterdam: Elsevier.10.1016/B978-008044980-7/50027-6Search in Google Scholar
Hickmann, Maya, Helen Engemann, Efstathia Soroli, Henriëtte Hendricks & Coralie Vincent. 2017. Expressing and categorizing motion in French and English: verbal and non-verbal cognition across languages. In Iraide Ibarretxe-Antuñano (ed.), Motion and Space across languages: theory and applications, 61–94. Amsterdam: John Benjamins.10.1075/hcp.59.04hicSearch in Google Scholar
Hohenstein, Jill M. 2005. Language-related motion events similarities in English and Spanish-speaking children. Journal of Cognition and Development 6(3). 403–425.10.1207/s15327647jcd0603_5Search in Google Scholar
Koster, Dietha & Teresa Cadierno. 2018. Is perception of placement universal? A mixed methods perspective on linguistic relativity. Lingua 207. 23–37.10.1016/j.lingua.2018.02.006Search in Google Scholar
Landau, Barbara & Ray Jackendoff. 1993. “What” and “where” in spatial language and spatial cognition. Behavioral and Brain Sciences 16. 217–265.10.1017/S0140525X00029733Search in Google Scholar
Landau, Barbara, Banchiamlack Dessalegn & Ariel M. Goldberg. 2010. Language and space: momentary interactions. In Vyvyan Evans & Paul Chilton (eds.), Language, cognition and space: the state of the art and new directions, 51–77. London: Equinox Publishing.Search in Google Scholar
Lemmens, Maarten. 2002. The semantic network of Dutch posture verbs. In John Newman (ed.), The linguistics of sitting, standing, and lying, 103–139. Amsterdam & Philadelphia: John Benjamins.10.1075/tsl.51.07lemSearch in Google Scholar
Lemmens, Maarten. 2005. Motion and location: toward a cognitive typology. In Genevieve Girard-Gillet (ed.), Parcours linguistiques. Domaine anglais, 223–244. Publications de l’ Université de Saint-Étienne.Search in Google Scholar
Lemmens, Maarten. 2014. Une grammaticalisation ratée? Une étude diachronique de stand en anglais, Anglophonia 18. https://journals.openedition.org/anglophonia/327 (accessed 20 July 2022).10.4000/anglophonia.327Search in Google Scholar
Lemmens, Maarten & Dan Slobin. 2008. Positie- en bewegingswerkwoorden in het Nederlands, het Engels en het Frans. Koninklijke Academie voor Nederlandse Taal- en Letterkunde 118. 17–32.Search in Google Scholar
Lemmens, Maarten & Julien Perrez. 2012. A quantitative analysis of the use of posture verbs by French-speaking learners of Dutch. CogniTextes 533. https://journals.openedition.org/cognitextes/609 (accessed 1 June 2022).10.4000/cognitextes.609Search in Google Scholar
Lesuisse, Mégane & Maarten Lemmens. 2018. Constructions and halfly-missed grammaticalization: A diachronic study of English posture verbs. In Evie Coussé, Peter Andersson & Joel Olofsson (eds.), Grammaticalization meets Construction Grammar, 43–74. Amsterdam & Philadelphia: John Benjamins.10.1075/cal.21.c3Search in Google Scholar
Montero-Melis, Guillermo. 2017. Thoughts in motion: The role of long-term L1 and short-term L2 experience when talking and thinking of caused Motion. PhD Thesis. Stockholm University Press.Search in Google Scholar
Newman, John. 2002. The Linguistics of Sitting, Standing, and Lying. Amsterdam & Philadelphia: John Benjamins.10.1075/tsl.51Search in Google Scholar
Papafragou, Anna, Christine Massey & Lila Gleitman. 2002. “Shake, rattle, ‘n’ roll: The representation of motion in language and cognition”. Cognition 84. 189–219.10.1016/S0010-0277(02)00046-XSearch in Google Scholar
Papafragou, Anna, Justin Hulbert & John Trueswell. 2008. Does language guide event perception? Evidence from eye movements. Cognition 108(1). 155–184.10.1016/j.cognition.2008.02.007Search in Google Scholar
Papafragou, Anna & Stathis Selimis. 2010. Event categorisation and language: A cross-linguistic study of motion. Language and Cognitive Processes 25. 224–260.10.1080/01690960903017000Search in Google Scholar
Skordos, Dimitrios, Ann Bunger, Catherine Richards, Stathis Selimis, John Trueswell & Anna Papafragou. 2019. Motion verbs and memory for motion events. Cognitive Neuropsychology 37(5–6). 254–270.10.1080/02643294.2019.1685480Search in Google Scholar
Slobin, Dan. I. 2007. Language and thought online: Cognitive consequences of linguistic relativity. In Benjamin K. Bergen, Vyvyan Evans & Jörg Zinken (eds.), The cognitive linguistics reader, 902–928. London: Equinox Publishing.Search in Google Scholar
Soroli, Efstathia. 2011. Typology and spatial cognition in English, French and Greek. Evidence from eye-tracking. In Antonis Botinis (ed.), ExLing 2011, Proceedings of the 4th Tutorial and Research Workshop on Experimental Linguistics, 25–27 May, 127–130. Paris: Diderot.10.36505/ExLing-2011/04/0031/000200Search in Google Scholar
Soroli, Efstathia. 2012. Variation in spatial language and cognition: Exploring visuo-spatial thinking and speaking cross-linguistically. Cognitive Processing 13. 333–337.10.1007/s10339-012-0494-4Search in Google Scholar
Soroli, Efstathia. 2016. Does language affect the way we perceive and talk about the visual world? Paper presented at the Research Group in Clinical Linguistics and Language Acquisition Seminar. University of Oslo (Norway), 4 April.Search in Google Scholar
Soroli, Efstathia. 2018. Focal vs. global ways of motion event processing and the role of language: evidence from categorization tasks and eye-tracking. In Antonis Botinis (ed.), ExLing 2018, Proceedings of the 9th Tutorial and Research Workshop on Experimental Linguistics, 28–30 August 2018, 109–112. Paris: Diderot.10.36505/ExLing-2018/09/0026/000359Search in Google Scholar
Soroli, Efstathia & Maya Hickmann. 2010. Language and spatial representations in French and in English: Some evidence from eye-movements. In Giovanna Marotta, Alessandro Lenci, Linda Meini & Francesco Rovai (eds.), Space in Language, 581–597. Pisa: Edizioni ETS.Search in Google Scholar
Soroli, Efstathia, Maya Hickmann, Henriëtte Hendriks, Helen Engemann & Coralie Vincent. 2015. Language effects on spatial cognition? Cross-linguistic evidence and eye-tracking. Talk presented at NINJAL International Symposium: Typology and Cognition in Motion Event Descriptions, Tokyo, Japan, 30 January. https://halshs.archives-ouvertes.fr/halshs-01111712 (accessed 20 July 2022).Search in Google Scholar
Soroli, Efstathia, Maya Hickmann & Henriëtte Hendricks. 2019. Casting an eye on motion-events: Eye-tracking and its implications for typology. In Michel Aurnague & Dejan Stosic (eds.), The semantics of dynamic space in French: Descriptive, experimental and formal studies on motion expression, 381–438. Amsterdam: John Benjamins.10.1075/hcp.66.07sorSearch in Google Scholar
Talmy, Leonard. 2000a. Toward a cognitive semantics. Vol 1. Cambridge, MA: MIT Press.Search in Google Scholar
Talmy, Leonard. 2000b. Toward a cognitive semantics. Vol 2. Cambridge, MA: MIT Press.10.7551/mitpress/6847.001.0001Search in Google Scholar
Trueswell, John C. & Anna Papafragou. 2010. Perceiving and remembering events cross-linguistically: Evidence from dual-task paradigms. Journal of Memory and Language 63. 64–82.10.1016/j.jml.2010.02.006Search in Google Scholar
Van Staden, Miriam, Melissa Bowerman Mariet Verhelst. 2006. Some properties of spatial description in Dutch. In Stephen C. Levinson & David Wilkins (eds.), Grammars of Space, 475–511. Cambridge: Cambridge University Press.10.1017/CBO9780511486753.014Search in Google Scholar
Whorf, Benjamin L. 1970 [1956]. Language, thought and reality. Cambridge, MA: MIT Press.Search in Google Scholar
©2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial: Cognitive Linguistics as an interdisciplinary endeavour
- How vector space models disambiguate adjectives: A perilous but valid enterprise
- Death, enemies, and illness: How English and Russian metaphorically conceptualise boredom
- The status of nominal sub-categories: Exploring frequency densities of plural -s
- No big deal: Situation-backgrounding uses of the Polish dative reflexive pronoun sobie/se
- Hand gestures with verbs of throwing: Collostructions, style and metaphor
- Exploring the conceptualisation of locative events in French, English, and Dutch: Insights from eye-tracking on two memorisation tasks
- Extending structural priming to test constructional relations: Some comments and suggestions
- Lexical Integrity: A mere construct or more a construction?
- Cognitive Linguistics meets Interactional Linguistics: Language development in the arena of language use
- Cognitive Linguistics meets multilingual language acquisition: What pattern identification can tell us
- Constructionist approaches to creativity
Articles in the same Issue
- Frontmatter
- Editorial: Cognitive Linguistics as an interdisciplinary endeavour
- How vector space models disambiguate adjectives: A perilous but valid enterprise
- Death, enemies, and illness: How English and Russian metaphorically conceptualise boredom
- The status of nominal sub-categories: Exploring frequency densities of plural -s
- No big deal: Situation-backgrounding uses of the Polish dative reflexive pronoun sobie/se
- Hand gestures with verbs of throwing: Collostructions, style and metaphor
- Exploring the conceptualisation of locative events in French, English, and Dutch: Insights from eye-tracking on two memorisation tasks
- Extending structural priming to test constructional relations: Some comments and suggestions
- Lexical Integrity: A mere construct or more a construction?
- Cognitive Linguistics meets Interactional Linguistics: Language development in the arena of language use
- Cognitive Linguistics meets multilingual language acquisition: What pattern identification can tell us
- Constructionist approaches to creativity